REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

3. Integration: from Riemann to Lebesgue

3.1. Riemann Integral.

Definition 3.1. For $a<b$, a partition of an interval $[a, b] \subset \mathbb{R}$ is a finite collection of points $P=\left\{x_{0}, \ldots, x_{m}\right\}, a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b$. A step function $s(x)$ for a partition P is a function which is constant on each interval $\left(x_{i}, x_{i+1}\right)$, and arbitrary at all other points.

For a domain $B=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right] \subset \mathbb{R}^{n}$ a partition is a set of the form $P=P_{1} \times \cdots \times P_{n}$, where P_{i} is a partition of $\left[a_{i}, b_{i}\right]$. For a multi-index $I=\left(i_{1}, \ldots, i_{n}\right)$ denote by \square_{I} the set of the form $\left(x_{i_{1}}, x_{i_{1}+1}\right) \times \cdots \times\left(x_{i_{n}}, x_{i_{n}+1}\right)$ and call it a brick of the partition P. A function $s(x)$ is a step function for a partition P if it is constant on every brick of P. The volume of a brick \square_{I} is the usual Euclidean volume, i.e.,

$$
\operatorname{vol}\left(\square_{I}\right)=\left(x_{i_{1}+1}-x_{i_{1}}\right) \cdot \ldots \cdot\left(x_{i_{n}+1}-x_{i_{n}}\right)
$$

Definition 3.2. A partition Q is a refinement of a partition P if $P_{i} \subset Q_{i}$ for all $i=1, \ldots, n$.
Lemma 3.3. Any two partitions of a domain B have a common refinement.
Proof. Given partitions $P=P_{1} \times \cdots \times P_{n}$ and $P^{\prime}=P_{1}^{\prime} \times \cdots \times P_{n}^{\prime}$, the partition $\left(P_{1} \cup P_{1}^{\prime}\right) \times \cdots \times$ $\left(P_{n} \cup P_{n}^{\prime}\right)$ is a common refinement.

Given a step function $s(x)$ for a partition P of $B \subset \mathbb{R}^{n}$, we define

$$
\mathcal{I}(s, P)=\sum_{I \in P} s_{I} \operatorname{vol}\left(\square_{I}\right)
$$

where s_{I} is the value of $s(x)$ on the brick \square_{I}, and the summation is taken over all bricks in the partition.

Lemma 3.4. If $s(x)$ is a step function for partitions P and P^{\prime} then $\mathcal{I}(s, P)=\mathcal{I}\left(s, P^{\prime}\right)$.
Proof. Obvious.
It follows from the above lemma that $\mathcal{I}(s, P)$ does not depend on the choice of the partition P for which s is a step function. Therefore, we simply denote this number by $\mathcal{I}(s)$.

Lemma 3.5. If $s(x)$ is a step function for a partition P and $t(x)$ is a step function for P^{\prime}, then $s(x) \leq t(x)$ implies $\mathcal{I}(s) \leq \mathcal{I}(t)$.

Proof. Pass to a common refinement and use the preceding lemma.
Definition 3.6. Let $B=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right] \subset \mathbb{R}^{n}$. A function $f: B \rightarrow \mathbb{R}$ is called (Riemann) integrable on B if for any $\varepsilon>0$ there exist step functions $s(x)$ and $t(x)$ such that $s(x) \leq f(x) \leq t(x)$ for all x and $\mathcal{I}(t)-\mathcal{I}(s)<\varepsilon$. For a function f integrable on a domain B define

$$
\int_{B} f(x) d x=\sup _{s \leq f} \mathcal{I}(s)=\inf _{f \leq t} \mathcal{I}(t)
$$

where the the supremum (resp. infimum) is taken over all step function s (resp. t) with $s \leq f$ (resp. $f \leq t$).

Proposition 3.7. Continuous functions on \mathbb{R}^{n} are Riemann integrable on any domain $B=$ $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right] \subset \mathbb{R}^{n}$.

Proof. Let $\varepsilon>0$ be given. Recall that a continuous function on a compact set is uniformly continuous, i.e., for any $\varepsilon>0$ there exists $\delta>0$ such that $|f(x)-f(y)|<\varepsilon$ whenever $|x-y|<\varepsilon$. Thus, there exists $\delta>0$ such that $|x-y|<\delta$ implies $|f(x)-f(y)|<\frac{\varepsilon}{\operatorname{vol}(B)}$. Select a partition P sufficiently fine so that the diameter of each brick of P is less than δ. Choose step functions $s(x)$ and $t(x)$ to be respectively the minimum and the maximum of f on each brick. Then $s \leq f \leq t$, and

$$
\int_{B} t(x)-\int_{B} s(x) \leq \frac{\varepsilon}{\operatorname{vol}(B)} \sum_{I \in P} \operatorname{vol}\left(\square_{I}\right)=\varepsilon
$$

We remark that what we defined above is, in fact, called the Darboux integral. However, it can be shown that Darboux's definition of integral is equivalent to that of Riemann.
3.2. What is wrong with the Riemann integral? There are several reasons why the Riemann integral defined in the previous section does not seem to be adequate. It all boils down to the fact that certain reasonable functions are not Riemann integrable. The following three examples will illustrate that. We begin with a definition.

Definition 3.8. Given a set $S \subset \mathbb{R}^{n}$, the characteristic function χ_{S} of S is defined to be

$$
\chi_{S}(x)= \begin{cases}1, & \text { if } x \in S \\ 0, & \text { if } x \notin S\end{cases}
$$

Example 3.1. The so-called Dirichlet function $\chi_{\mathbb{Q}}$, is clearly not Riemann integrable on $[0,1]$, since $\int_{[0,1]} s(x)=0$ and $\int_{[0,1]} t(x)=1$ for any step functions s and t with $s \leq \chi_{\mathbb{Q}} \leq t$. This is because both rational numbers \mathbb{Q} and irrational numbers $\mathbb{R} \backslash \mathbb{Q}$ are dense in \mathbb{R}. \diamond

Proposition 3.9. Every open set $U \subset \mathbb{R}$ can be written in a unique way as an at most countable union of disjoint open intervals.

We leave the proof of the proposition as an exercise for the reader. With the help of this proposition we can make the following definition. Given an open set $U \subset \mathbb{R}$ we define the Lebesgue measure of U to be

$$
m(U)=\sum_{I}\left|U_{I}\right|
$$

where $\left|\left(U_{i}\right)\right|$ is the length of the interval U_{I}, and the summation is taken over the disjoint union of open intervals whose union is U. It is immediate that the Lebesgue measure of every open interval is equal to its length.

While the previous example can be dismissed by declaring $\chi_{\mathbb{Q}}$ to be "too irregular" to be integrable, the next example shows that there exist open sets whose characteristic functions are not integrable.

Example 3.2. Suppose $U \subset[0,1]$ is an open set with the following properties: U is dense in $[0,1]$, and $m(U)<1$. We claim that χ_{U} is not Riemann integrable. For the proof of the claim consider any two step functions $s(x) \leq \chi_{U}(x) \leq t(x)$ for a partition P of $[0,1]$. Since U is dense, any brick
$\left[x_{i}, x_{i+1}\right]$ will have a nonempty intersection with U, and so $\int_{[0,1]} t(x)=1$. On the other hand, (using the multidimensional notation, although we are in \mathbb{R}), let

$$
\int_{[0,1]} s(x)=\sum_{I} s_{I} \operatorname{vol}\left(\square_{I}\right) .
$$

Separate the partition P into $R \cup S$, where $R=\left\{J \in P: s_{J}>0\right\}$ and $S=\left\{J \in P: s_{J} \leq 0\right\}$. Then $J \in R$ implies $0<s_{J}<1$, and $\square_{J} \subset U$. It follows then that

$$
\int_{[0,1]} s(x)=\sum_{J \in S} s_{J} \operatorname{vol}\left(\square_{J}\right)+\sum_{J \in R} s_{J} \operatorname{vol}\left(\square_{J}\right) \leq \sum_{J \in R} \operatorname{vol}\left(\square_{J}\right) \leq m(U)<1
$$

This shows that χ_{U} is not Riemann integrable.
It remains to show that there indeed exist dense open subsets of $[0,1]$ with the Lebesgue measure less than 1 . To construct such a set, enumerate $\mathbb{Q} \cap(0,1)$ as $\left\{r_{1}, r_{2}, \ldots,\right\}$. Suppose that $0<b<1$. For every $l \in \mathbb{N}$ select an open interval J_{l} such that $r_{l} \in J_{l}, J_{l} \subset(0,1)$ and the length of J_{l} equals $b / 2^{l}$. Then the union U of all U_{l} is an open subset of $[0,1]$ which is clearly dense in $[0,1]$. Let U_{i} be the disjoint union of open intervals, with $\cup_{j} U_{j}=U$ (these exist by Proposition 3.9). Then,

$$
m\left(\cup_{l} U_{l}\right)=\sum_{j} \operatorname{vol}\left(U_{j}\right) \leq \sum_{l} \operatorname{vol}\left(J_{l}\right)=b .
$$

Thus, U has the required properties. \diamond
Example 3.3 (Cantor-type sets). Let $I=[p, q]$ be an interval in \mathbb{R}, and let the length of I be equal to $b>0$. For $b>a>0$, write $I=[p, r] \cup(r, s) \cup[s, q]$, such that $|r-p|=|q-s|=(b-a) / 2$, and $|s-r|=a$. We call $[p, r]$ and $[s, q]$ the remnants of I and (r, s) the middle part of I.

Select a_{0}, a_{1}, \ldots, positive real numbers such that $\sum_{n=0}^{\infty} 2^{n} a_{n}=a$. For each $n \geq 1$, let

$$
b_{n}=2^{-n}\left(1-\sum_{k=0}^{n-1} 2^{k} a_{k}\right),
$$

so that $b_{n}>a_{n}$ and $b_{n+1}=\frac{b_{n}-a_{n}}{2}$ for all n. Let $S_{0}=\left\{I_{0}\right\}$ be the middle part of $[0,1], T_{1}=\left\{J_{1}, J_{2}\right\}$ be the corresponding a_{0}-remnants. Then these have length $b_{1}>a_{1}$. Let S_{1} be the middle a_{1}-parts of T_{1}, and let T_{2} be the set of a_{1}-remnants of T_{1}. Their length is $b_{2}>a_{2}$. Note that S_{1} has 2 elements, while T_{2} has 4 . We continue inductively: construct S_{n+1} by taking the middle a_{n}-parts of T_{n}, while T_{n+1} will consist of the remnants of T_{n}.

Let $U=S_{0} \cup S_{1} \cup \ldots$ By construction, this union is disjoint, and $m(U)=\sum 2^{n} a_{n}=a$. Let J be an arbitrary subinterval of $[0,1]$ of length b_{n}. Then J intersects $S_{0}, \ldots S_{n}$, and hence, U. Indeed, otherwise, J is contained in the disjoint union in T_{n+1}. But the intervals in T_{n+1} have length $b_{n+1}<b_{n}$, a contradiction. Since $b_{n} \rightarrow 0$ as $n \rightarrow \infty$, we conclude that any interval of positive length will have a nonempty intersection with U. Thus U is dense in $[0,1]$. It follows from the previous example that χ_{U} is not integrable on $[0,1]$.

For a concrete Cantor-type set, consider $a_{n}=\frac{1}{4^{n+1}}$. Then $a=\sum_{n=0}^{\infty} 2^{n} \frac{1}{4^{n+1}}=1 / 2$, and thus the set U obtained for this choice of a_{n} has a nonintegrable characteristic function. \diamond
3.3. Lebesgue Integral. In this subsection we briefly outline the construction of the Lebesgue integral. We begin with Lebesgue measurable sets.

Let B be a "brick" domain in \mathbb{R}^{n} defined by $B=I_{1} \times \ldots \times I_{n}$ where I_{j} are intervals in \mathbb{R} of the form $\left(a_{j}, b_{j}\right),\left(a_{j}, b_{j}\right],\left[a_{j}, b_{j}\right)$, or $\left[a_{j}, b_{j}\right], a_{j} \leq b_{j}$. Define a map $m: \mathcal{P} \rightarrow[0,+\infty)$ on the set \mathcal{P} of all bricks by setting $m(B)=\prod_{j}\left(b_{j}-a_{j}\right)$. Thus m is just the usual Euclidean volume (resp. length,

RASUL SHAFIKOV
area) of a brick. We also add the empty set to \mathcal{P} and define $m(\varnothing)=0$. If a set E is a finite disjoint union of bricks, i.e.,

$$
\begin{equation*}
E=\cup_{j=0}^{k} B_{j}, \quad B_{j} \in \mathcal{P}, \quad B_{i} \cap B_{j}=\varnothing, \quad \forall i \neq j, \tag{1}
\end{equation*}
$$

then clearly

$$
\begin{equation*}
m(E)=\sum_{j=0}^{k} m\left(B_{k}\right) \tag{2}
\end{equation*}
$$

It is possible to extend m as a positive function to a wider class of sets still keeping the additivity property (2). We say that a subset E of \mathbb{R}^{n} is elementary if it admits representation (1). Then we view (2) as the definition of $m(E)$. Note that this definition is independent of the choice of B_{k} in (1). It is easy to see that if E_{1} and E_{2} are two elementary sets, then $E_{1} \cup E_{2}, E_{1} \cap E_{2}, E_{1} \backslash E_{2}$ are elementary sets. We denote the class of elementary sets by \mathcal{E}. The crucial property of the function $m: \mathcal{E} \rightarrow \mathbb{R}^{+} \cup\{0\}$ is the following: if $\left(E_{j}\right)$ is a finite or countable collection of elementary sets and $E \in \mathcal{E}$ satisfies $E \subset \cup_{j} E_{j}$, then $m(E) \leq \sum_{j} m\left(E_{j}\right)$.

Let now A be a subset of \mathbb{R}^{n}. We define its outer measure m^{*} by

$$
m^{*}(A)=\inf \left\{\sum_{j} m\left(E_{j}\right): A \subset \cup_{j} E_{j}, E_{j} \in \mathcal{E}\right\}
$$

where the infimum is taken over all finite or countable coverings of A by elementary sets. Recall that a symmetric difference of two sets A and B is defined by $A \Delta B=(A \cup B) \backslash(A \cap B)$.

Definition 3.10. A set $A \subset \mathbb{R}^{n}$ is called Lebesgue measurable if for every $\varepsilon>0$ there exists $E \in \mathcal{E}$ such that $m^{*}(A \Delta E)<\varepsilon$. If A is a measurable set, the Lebesgue measure of A is defined as $m(A):=m^{*}(A)$.

Denote by \mathcal{M} the class of all measurable sets in \mathbb{R}^{n}. Clearly, every brick domain is measurable. One can show that \mathcal{M} is closed with respect to finite or countable application of unions, intersections and differences. Further, one can show that any open or closed subset of \mathbb{R}^{n} is measurable, and that a set X is measurable if and only if for any $\varepsilon>0$ there exists an open set G (resp. closed F) such that $X \subset G($ resp. $F \subset X)$ such that $m^{*}(G \backslash X)<\varepsilon\left(\right.$ resp. $\left(m^{*}(X \backslash F)<\varepsilon\right)$.

Perhaps the most important property of the Lebesgue measure is its σ-additivity: if $\left(A_{j}\right)$ is a disjoint sequence of measurable sets and $A=\cup_{j} A_{j}$, then $m(A)=\sum_{j} m\left(A_{j}\right)$. It is also monotone: if $A \subset B$ then $m(A) \leq m(B)$.
Lemma 3.11. Any countable set S in \mathbb{R}^{n} has measure zero.
Proof. Enclose every point a_{n} of $S=\left\{a_{0}, a_{1}, \ldots\right\}$ in a brick domain of volume $\varepsilon / 2^{n}$.
Note that the converse to the lemma is false: there exist sets of measure zero which are not countable. A primary example of such domain is the Cantor set. Following the construction in Example 3.3 we produce an open set U by taking $a_{n}=1 / 3$ for all $n \in \mathbb{N}$. Then the set $[0,1] \backslash U$ is called the Cantor set. It is a compact set of measure zero, and can be shown to have cardinality of \mathbb{R}. We leave details to the reader.

We now move from sets to functions. Let X be a measurable subset of \mathbb{R}^{n}. A function f : $X \rightarrow \mathbb{R}$ is called measurable if all subsets $f^{-1}((-\infty, a)), f^{-1}((-\infty, a]), f^{-1}([a, \infty)), f^{-1}((a, \infty))$ are measurable for every $a \in f(X)$. In particular, suppose that f admits at most a finite set of values $y_{0}, y_{1}, \ldots, y_{k}$. Then f is measurable if and only if every set $f^{-1}\left(y_{j}\right)$ is measurable. Measurable
functions that admit only finitely many values will be called simple. The Lebesgue integral over X of a simple function ψ is defined by

$$
\begin{equation*}
\int_{X} \psi(x) d x:=\sum_{j} y_{j} m\left(\psi^{-1}\left(y_{j}\right)\right) . \tag{3}
\end{equation*}
$$

Definition 3.12. Let $f: X \rightarrow \mathbb{R}$ be a bounded measurable function defined on $X \in \mathcal{M}$ with $m(X)<\infty$. Then define

$$
\begin{equation*}
\int_{X} f(x) d x=\sup _{\psi \leq f} \int_{X} \psi(x) d x \tag{4}
\end{equation*}
$$

where the supremum is taken over all simple functions ψ on X satisfying $\psi \leq f$.
It can be shown that for a measurable function $f: X \rightarrow \mathbb{R}$, the Lebesgue integral can be also defined as $\int_{X} f(x) d x=\inf _{\phi \geq f} \int_{X} \phi(x) d x$ for simple functions $\phi \geq f$. Both definitions agree.

Proposition 3.13. If $f: X \rightarrow \mathbb{R}$ is Riemann integrable for a brick domain $X \subset \mathbb{R}^{n}$, then the integral in (4) well-defined and finite.

Proof. Note that every step function on X in particular is a simple function. Hence, for step functions $s(x)$ and $t(x)$ satisfying $s \leq f \leq t$, we have

$$
\mathcal{I}(s)=\int_{X} s(x) d x \leq \sup _{\phi \leq f} \int_{X} \phi(x) d x \leq \inf _{f \leq \psi} \int_{X} \psi(x) d x \leq \int_{X} t(x) d x=\mathcal{I}(t)
$$

Since f is Riemann integrable, $\mathcal{I}(t)-\mathcal{I}(s)$ can be made arbitrarily small, and we conclude that the function f is Lebesgue integrable.

If now $f \geq 0$ on $X \in \mathcal{M}$, we define

$$
\begin{equation*}
\int_{X} f(x) d x=\sup _{h \leq f} \int_{X} h(x) d x \tag{5}
\end{equation*}
$$

where the supremum is taken over all bounded measurable functions h such that $m\{x: h(x) \neq$ $0\}<\infty$. This last assumption ensures that $\int_{X} h(x) d x$ on the right-hand side of (5) is well-defined even if $m(X)=\infty$. Indeed, we simply have

$$
\int_{X} h(x) d x=\int_{\{x: h(x) \neq 0\}} h(x) d x .
$$

For a general measurable $f: X \rightarrow \mathbb{R}$ we set $f^{+}=\max \{f, 0\}$, and $f^{-}=\max \{-f, 0\}$. Then $f=f^{+}-f^{-}$, and $|f|=f^{+}+f^{-}$.
Definition 3.14. For $X \in \mathcal{M}$ and a measurable $f: X \rightarrow \mathbb{R}$ we define

$$
\int_{X} f(x) d x=\int_{X} f^{+}(x) d x-\int_{X} f^{-}(x) d x
$$

If both integrals on the right are finite we say that f is (Lebesgue) integrable on X. The class of integrable functions is denoted by $L^{1}(X)$.

A property of functions defined on a domain in \mathbb{R}^{n} is said to hold almost everywhere if it does not hold on a set of measure zero. The common notation for that is a.e.. For example two functions $f=g$ a.e. means that the set of points where f is not equal to g has measure zero. It follows then that $\int f=\int g$. Another example is convergence a.e.: we say $\lim f_{n}=f$ a.e., if the set of points x for which $\lim f_{n}(x) \neq f(x)$ has measure zero.

Using the definition of the integral and properties of measurable sets one can prove basic properties of integration, such as $\int a f+b g=a \int f+b \int g$ for $a, b \in \mathbb{R} ; f \leq g \Rightarrow \int f \leq \int g$; $\int_{A \cup B} f=\int_{A} f+\int_{B} f$ for disjoint A, B; etc. A more delicate property is taking the limit under the integral sign. The following two theorems provide sufficient conditions under which the operations of taking a limit and integration commute.

Theorem 3.15 (Fatou's lemma). If $\left\{f_{n}\right\}$ is a sequence of nonnegative measurable functions and $f_{n}(x) \rightarrow f(x)$ a.e. on $X \in \mathcal{M}$, then

$$
\begin{equation*}
\int_{X} f(x) d x \leq \liminf \int_{X} f_{n} . \tag{6}
\end{equation*}
$$

Proof. Without loss of generality we may assume $f_{n}(x) \rightarrow f(x)$ for all x. By the definition of the Lebesgue integral, it is enough to show that (6) holds if we replace f with any non-negative simple function $\phi \leq f$. Suppose that $\phi=\sum_{k=1}^{m} a_{k} \chi_{A_{k}}$, where A_{k} are disjoint measurable sets, and $a_{k}>0$. Let $0<t<1$. Since $\phi(x) \leq f(x)$, we see that $a_{k} \leq \liminf f_{n}(x)$ for each k and $x \in A_{k}$. It follows that for a fixed k the sequence of sets

$$
B_{k n}=\left\{x \in A_{k}: f_{p}(x) \geq t a_{k} \text { for all } p \geq n\right\}
$$

increases to A_{k}. Consequently, $m\left(B_{k n}\right) \rightarrow m\left(A_{k}\right)$ as $n \rightarrow \infty$. The simple function $\sum_{k=1}^{m} t a_{k} \chi_{B_{k n}}$ is everywhere less than f_{n}, and so

$$
\int_{X} f_{n} d x \geq \sum_{k=1}^{m} t a_{k} m\left(B_{k n}\right) .
$$

Taking liminf in this inequality yields

$$
\liminf _{n \rightarrow \infty} \int_{X} f_{n} d x \geq \sum_{k=1}^{m} t a_{k} m\left(A_{k}\right)=t \int_{X} \phi d x .
$$

Finally, by letting $t \rightarrow 1$ we get (6).
Theorem 3.16 (Lebesgue Convergence theorem). Let $X \subset \mathbb{R}^{n}$ be a measurable subset and $\left\{f_{n}\right\}$ be a sequence of measurable functions. Suppose that $f_{n}(x) \longrightarrow f(x)$ for almost every $x \in X$. Furthermore, assume that there exists a function $g \in L^{1}(X)$ such that

$$
\left|f_{n}(x)\right| \leq g(x), n=1,2, \ldots
$$

Then $f \in L^{1}(X)$, and

$$
\lim _{n \longrightarrow \infty} \int_{X} f_{n} d x=\int_{X} f d x
$$

Proof. The function $g-f_{n}$ is nonnegative, and so by Fatou's lemma

$$
\int_{X}(g-f) d x \leq \liminf \int_{X}\left(g-f_{n}\right) d x .
$$

Since $|f| \leq g, f$ is integrable, and we have

$$
\int_{X} g d x-\int_{X} f d x \leq \int_{X} g d x-\limsup \int_{X} f_{n} d x
$$

from which we conclude that

$$
\int_{X} f d x \geq \limsup \int_{X} f_{n} d x
$$

Similarly, considering $g+f_{n}$ we get

$$
\int_{X} f d x \leq \liminf \int_{X} f_{n} d x
$$

and the theorem follows.
Note that Fatou's lemma has a weaker hypothesis than the Lebesgue Convergence theorem, and as a result its conclusion is also weaker. The advantage of Fatou's lemma is that it is applicable even if f is not known to be integrable and so it is often a good way of showing that f is integrable.

