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REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

3. Integration: from Riemann to Lebesgue

3.1. Riemann Integral.

Definition 3.1. For a < b, a partition of an interval [a, b] ⊂ R is a finite collection of points
P = {x0, . . . , xm}, a = x0 < x1 < · · · < xn−1 < xn = b. A step function s(x) for a partition P is a
function which is constant on each interval (xi, xi+1), and arbitrary at all other points.

For a domain B = [a1, b1]× · · · × [an, bn] ⊂ Rn a partition is a set of the form P = P1× · · · ×Pn,
where Pi is a partition of [ai, bi]. For a multi-index I = (i1, . . . , in) denote by �I the set of the
form (xi1 , xi1+1)× · · · × (xin , xin+1) and call it a brick of the partition P . A function s(x) is a step
function for a partition P if it is constant on every brick of P . The volume of a brick �I is the
usual Euclidean volume, i.e.,

vol (�I) = (xi1+1 − xi1) · ... · (xin+1 − xin).

Definition 3.2. A partition Q is a refinement of a partition P if Pi ⊂ Qi for all i = 1, . . . , n.

Lemma 3.3. Any two partitions of a domain B have a common refinement.

Proof. Given partitions P = P1 × · · · × Pn and P ′ = P ′1 × · · · × P ′n, the partition (P1 ∪ P ′1)× · · · ×
(Pn ∪ P ′n) is a common refinement. �

Given a step function s(x) for a partition P of B ⊂ Rn, we define

I(s, P ) =
∑
I∈P

sI vol (�I),

where sI is the value of s(x) on the brick �I , and the summation is taken over all bricks in the
partition.

Lemma 3.4. If s(x) is a step function for partitions P and P ′ then I(s, P ) = I(s, P ′).

Proof. Obvious. �

It follows from the above lemma that I(s, P ) does not depend on the choice of the partition P
for which s is a step function. Therefore, we simply denote this number by I(s).

Lemma 3.5. If s(x) is a step function for a partition P and t(x) is a step function for P ′, then
s(x) ≤ t(x) implies I(s) ≤ I(t).

Proof. Pass to a common refinement and use the preceding lemma. �

Definition 3.6. Let B = [a1, b1]× · · · × [an, bn] ⊂ Rn. A function f : B → R is called (Riemann)
integrable on B if for any ε > 0 there exist step functions s(x) and t(x) such that s(x) ≤ f(x) ≤ t(x)
for all x and I(t)− I(s) < ε. For a function f integrable on a domain B define∫

B
f(x)dx = sup

s≤f
I(s) = inf

f≤t
I(t),

1
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where the the supremum (resp. infimum) is taken over all step function s (resp. t) with s ≤ f
(resp. f ≤ t).

Proposition 3.7. Continuous functions on Rn are Riemann integrable on any domain B =
[a1, b1]× · · · × [an, bn] ⊂ Rn.

Proof. Let ε > 0 be given. Recall that a continuous function on a compact set is uniformly
continuous, i.e., for any ε > 0 there exists δ > 0 such that |f(x)− f(y)| < ε whenever |x− y| < ε.
Thus, there exists δ > 0 such that |x− y| < δ implies |f(x)− f(y)| < ε

vol (B) . Select a partition P

sufficiently fine so that the diameter of each brick of P is less than δ. Choose step functions s(x)
and t(x) to be respectively the minimum and the maximum of f on each brick. Then s ≤ f ≤ t,
and ∫

B
t(x)−

∫
B
s(x) ≤ ε

vol (B)

∑
I∈P

vol (�I) = ε.

�

We remark that what we defined above is, in fact, called the Darboux integral. However, it can
be shown that Darboux’s definition of integral is equivalent to that of Riemann.

3.2. What is wrong with the Riemann integral? There are several reasons why the Riemann
integral defined in the previous section does not seem to be adequate. It all boils down to the fact
that certain reasonable functions are not Riemann integrable. The following three examples will
illustrate that. We begin with a definition.

Definition 3.8. Given a set S ⊂ Rn, the characteristic function χS of S is defined to be

χS(x) =

{
1, if x ∈ S,
0, if x /∈ S.

Example 3.1. The so-called Dirichlet function χQ, is clearly not Riemann integrable on [0, 1],
since

∫
[0,1] s(x) = 0 and

∫
[0,1] t(x) = 1 for any step functions s and t with s ≤ χQ ≤ t. This is

because both rational numbers Q and irrational numbers R \Q are dense in R. �

Proposition 3.9. Every open set U ⊂ R can be written in a unique way as an at most countable
union of disjoint open intervals.

We leave the proof of the proposition as an exercise for the reader. With the help of this
proposition we can make the following definition. Given an open set U ⊂ R we define the Lebesgue
measure of U to be

m(U) =
∑
I

|UI |,

where |(Ui)| is the length of the interval UI , and the summation is taken over the disjoint union of
open intervals whose union is U . It is immediate that the Lebesgue measure of every open interval
is equal to its length.

While the previous example can be dismissed by declaring χQ to be “too irregular” to be inte-
grable, the next example shows that there exist open sets whose characteristic functions are not
integrable.

Example 3.2. Suppose U ⊂ [0, 1] is an open set with the following properties: U is dense in [0, 1],
and m(U) < 1. We claim that χU is not Riemann integrable. For the proof of the claim consider
any two step functions s(x) ≤ χU (x) ≤ t(x) for a partition P of [0, 1]. Since U is dense, any brick
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[xi, xi+1] will have a nonempty intersection with U , and so
∫
[0,1] t(x) = 1. On the other hand, (using

the multidimensional notation, although we are in R), let∫
[0,1]

s(x) =
∑
I

sI vol (�I).

Separate the partition P into R∪S, where R = {J ∈ P : sJ > 0} and S = {J ∈ P : sJ ≤ 0}. Then
J ∈ R implies 0 < sJ < 1, and �J ⊂ U . It follows then that∫

[0,1]
s(x) =

∑
J∈S

sJ vol (�J) +
∑
J∈R

sJ vol (�J) ≤
∑
J∈R

vol (�J) ≤ m(U) < 1.

This shows that χU is not Riemann integrable.
It remains to show that there indeed exist dense open subsets of [0, 1] with the Lebesgue measure

less than 1. To construct such a set, enumerate Q∩ (0, 1) as {r1, r2, . . . , }. Suppose that 0 < b < 1.
For every l ∈ N select an open interval Jl such that rl ∈ Jl, Jl ⊂ (0, 1) and the length of Jl equals
b/2l. Then the union U of all Ul is an open subset of [0, 1] which is clearly dense in [0, 1]. Let Ui
be the disjoint union of open intervals, with ∪jUj = U (these exist by Proposition 3.9). Then,

m(∪lUl) =
∑
j

vol (Uj) ≤
∑
l

vol (Jl) = b.

Thus, U has the required properties. �

Example 3.3 (Cantor-type sets). Let I = [p, q] be an interval in R, and let the length of I be
equal to b > 0. For b > a > 0, write I = [p, r]∪ (r, s)∪ [s, q], such that |r− p| = |q− s| = (b− a)/2,
and |s− r| = a. We call [p, r] and [s, q] the remnants of I and (r, s) the middle part of I.

Select a0, a1, . . . , positive real numbers such that
∑∞

n=0 2nan = a. For each n ≥ 1, let

bn = 2−n

(
1−

n−1∑
k=0

2kak

)
,

so that bn > an and bn+1 = bn−an
2 for all n. Let S0 = {I0} be the middle part of [0, 1], T1 = {J1, J2}

be the corresponding a0-remnants. Then these have length b1 > a1. Let S1 be the middle a1-parts
of T1, and let T2 be the set of a1-remnants of T1. Their length is b2 > a2. Note that S1 has 2
elements, while T2 has 4. We continue inductively: construct Sn+1 by taking the middle an-parts
of Tn, while Tn+1 will consist of the remnants of Tn.

Let U = S0 ∪ S1 ∪ . . . . By construction, this union is disjoint, and m(U) =
∑

2nan = a. Let
J be an arbitrary subinterval of [0, 1] of length bn. Then J intersects S0, . . . Sn, and hence, U .
Indeed, otherwise, J is contained in the disjoint union in Tn+1. But the intervals in Tn+1 have
length bn+1 < bn, a contradiction. Since bn → 0 as n → ∞, we conclude that any interval of
positive length will have a nonempty intersection with U . Thus U is dense in [0, 1]. It follows from
the previous example that χU is not integrable on [0, 1].

For a concrete Cantor-type set, consider an = 1
4n+1 . Then a =

∑∞
n=0 2n 1

4n+1 = 1/2, and thus the
set U obtained for this choice of an has a nonintegrable characteristic function. �

3.3. Lebesgue Integral. In this subsection we briefly outline the construction of the Lebesgue
integral. We begin with Lebesgue measurable sets.

Let B be a “brick” domain in Rn defined by B = I1 × ....× In where Ij are intervals in R of the
form (aj , bj), (aj , bj ], [aj , bj), or [aj , bj ], aj ≤ bj . Define a map m : P → [0,+∞) on the set P of all
bricks by setting m(B) =

∏
j(bj − aj). Thus m is just the usual Euclidean volume (resp. length,



4 RASUL SHAFIKOV

area) of a brick. We also add the empty set to P and define m(∅) = 0. If a set E is a finite disjoint
union of bricks, i.e.,

E = ∪kj=0Bj , Bj ∈ P, Bi ∩Bj = ∅, ∀i 6= j,(1)

then clearly

m(E) =
k∑
j=0

m(Bk).(2)

It is possible to extend m as a positive function to a wider class of sets still keeping the additivity
property (2). We say that a subset E of Rn is elementary if it admits representation (1). Then we
view (2) as the definition of m(E). Note that this definition is independent of the choice of Bk in
(1). It is easy to see that if E1 and E2 are two elementary sets, then E1 ∪E2, E1 ∩E2, E1\E2 are
elementary sets. We denote the class of elementary sets by E . The crucial property of the function
m : E → R+ ∪ {0} is the following: if (Ej) is a finite or countable collection of elementary sets and
E ∈ E satisfies E ⊂ ∪jEj , then m(E) ≤

∑
jm(Ej).

Let now A be a subset of Rn. We define its outer measure m∗ by

m∗(A) = inf

∑
j

m(Ej) : A ⊂ ∪jEj , Ej ∈ E

 ,

where the infimum is taken over all finite or countable coverings of A by elementary sets. Recall
that a symmetric difference of two sets A and B is defined by A∆B = (A ∪B)\(A ∩B).

Definition 3.10. A set A ⊂ Rn is called Lebesgue measurable if for every ε > 0 there exists
E ∈ E such that m∗(A∆E) < ε. If A is a measurable set, the Lebesgue measure of A is defined as
m(A) := m∗(A).

Denote by M the class of all measurable sets in Rn. Clearly, every brick domain is measurable.
One can show thatM is closed with respect to finite or countable application of unions, intersections
and differences. Further, one can show that any open or closed subset of Rn is measurable, and
that a set X is measurable if and only if for any ε > 0 there exists an open set G (resp. closed F )
such that X ⊂ G (resp. F ⊂ X) such that m∗(G \X) < ε (resp. (m∗(X \ F ) < ε).

Perhaps the most important property of the Lebesgue measure is its σ-additivity: if (Aj) is a
disjoint sequence of measurable sets and A = ∪jAj , then m(A) =

∑
jm(Aj). It is also monotone:

if A ⊂ B then m(A) ≤ m(B).

Lemma 3.11. Any countable set S in Rn has measure zero.

Proof. Enclose every point an of S = {a0, a1, . . . } in a brick domain of volume ε/2n. �

Note that the converse to the lemma is false: there exist sets of measure zero which are not
countable. A primary example of such domain is the Cantor set. Following the construction in
Example 3.3 we produce an open set U by taking an = 1/3 for all n ∈ N. Then the set [0, 1] \ U is
called the Cantor set. It is a compact set of measure zero, and can be shown to have cardinality of
R. We leave details to the reader.

We now move from sets to functions. Let X be a measurable subset of Rn. A function f :
X → R is called measurable if all subsets f−1((−∞, a)), f−1((−∞, a]), f−1([a,∞)), f−1((a,∞))
are measurable for every a ∈ f(X). In particular, suppose that f admits at most a finite set of
values y0, y1, ..., yk. Then f is measurable if and only if every set f−1(yj) is measurable. Measurable



REAL ANALYSIS LECTURE NOTES 5

functions that admit only finitely many values will be called simple. The Lebesgue integral over X
of a simple function ψ is defined by∫

X
ψ(x)dx :=

∑
j

yjm(ψ−1(yj)).(3)

Definition 3.12. Let f : X → R be a bounded measurable function defined on X ∈ M with
m(X) <∞. Then define

(4)

∫
X
f(x)dx = sup

ψ≤f

∫
X
ψ(x)dx,

where the supremum is taken over all simple functions ψ on X satisfying ψ ≤ f .

It can be shown that for a measurable function f : X → R, the Lebesgue integral can be also
defined as

∫
X f(x)dx = infφ≥f

∫
X φ(x)dx for simple functions φ ≥ f . Both definitions agree.

Proposition 3.13. If f : X → R is Riemann integrable for a brick domain X ⊂ Rn, then the
integral in (4) well-defined and finite.

Proof. Note that every step function on X in particular is a simple function. Hence, for step
functions s(x) and t(x) satisfying s ≤ f ≤ t, we have

I(s) =

∫
X
s(x)dx ≤ sup

φ≤f

∫
X
φ(x)dx ≤ inf

f≤ψ

∫
X
ψ(x)dx ≤

∫
X
t(x)dx = I(t).

Since f is Riemann integrable, I(t)−I(s) can be made arbitrarily small, and we conclude that the
function f is Lebesgue integrable. �

If now f ≥ 0 on X ∈M, we define

(5)

∫
X
f(x)dx = sup

h≤f

∫
X
h(x)dx,

where the supremum is taken over all bounded measurable functions h such that m{x : h(x) 6=
0} <∞. This last assumption ensures that

∫
X h(x)dx on the right-hand side of (5) is well-defined

even if m(X) =∞. Indeed, we simply have∫
X
h(x)dx =

∫
{x:h(x)6=0}

h(x)dx.

For a general measurable f : X → R we set f+ = max{f, 0}, and f− = max{−f, 0}. Then
f = f+ − f−, and |f | = f+ + f−.

Definition 3.14. For X ∈M and a measurable f : X → R we define∫
X
f(x)dx =

∫
X
f+(x)dx−

∫
X
f−(x)dx.

If both integrals on the right are finite we say that f is (Lebesgue) integrable on X. The class of
integrable functions is denoted by L1(X).

A property of functions defined on a domain in Rn is said to hold almost everywhere if it does not
hold on a set of measure zero. The common notation for that is a.e.. For example two functions
f = g a.e. means that the set of points where f is not equal to g has measure zero. It follows then
that

∫
f =

∫
g. Another example is convergence a.e.: we say lim fn = f a.e., if the set of points x

for which lim fn(x) 6= f(x) has measure zero.
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Using the definition of the integral and properties of measurable sets one can prove basic prop-
erties of integration, such as

∫
af + bg = a

∫
f + b

∫
g for a, b ∈ R; f ≤ g ⇒

∫
f ≤

∫
g;∫

A∪B f =
∫
A f +

∫
B f for disjoint A,B; etc. A more delicate property is taking the limit un-

der the integral sign. The following two theorems provide sufficient conditions under which the
operations of taking a limit and integration commute.

Theorem 3.15 (Fatou’s lemma). If {fn} is a sequence of nonnegative measurable functions and
fn(x)→ f(x) a.e. on X ∈M, then

(6)

∫
X
f(x)dx ≤ lim inf

∫
X
fn.

Proof. Without loss of generality we may assume fn(x) → f(x) for all x. By the definition of the
Lebesgue integral, it is enough to show that (6) holds if we replace f with any non-negative simple
function φ ≤ f . Suppose that φ =

∑m
k=1 akχAk

, where Ak are disjoint measurable sets, and ak > 0.
Let 0 < t < 1. Since φ(x) ≤ f(x), we see that ak ≤ lim inf fn(x) for each k and x ∈ Ak. It follows
that for a fixed k the sequence of sets

Bkn = {x ∈ Ak : fp(x) ≥ tak for all p ≥ n}

increases to Ak. Consequently, m(Bkn) → m(Ak) as n → ∞. The simple function
∑m

k=1 takχBkn

is everywhere less than fn, and so ∫
X
fn dx ≥

m∑
k=1

takm(Bkn).

Taking lim inf in this inequality yields

lim inf
n→∞

∫
X
fndx ≥

m∑
k=1

takm(Ak) = t

∫
X
φdx.

Finally, by letting t→ 1 we get (6). �

Theorem 3.16 (Lebesgue Convergence theorem). Let X ⊂ Rn be a measurable subset and {fn}
be a sequence of measurable functions. Suppose that fn(x) −→ f(x) for almost every x ∈ X.
Furthermore, assume that there exists a function g ∈ L1(X) such that

|fn(x)| ≤ g(x), n = 1, 2, ...

Then f ∈ L1(X), and

lim
n−→∞

∫
X
fndx =

∫
X
f dx.

Proof. The function g − fn is nonnegative, and so by Fatou’s lemma∫
X

(g − f) dx ≤ lim inf

∫
X

(g − fn) dx.

Since |f | ≤ g, f is integrable, and we have∫
X
g dx−

∫
X
f dx ≤

∫
X
g dx− lim sup

∫
X
fn dx,

from which we conclude that ∫
X
f dx ≥ lim sup

∫
X
fn dx.
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Similarly, considering g + fn we get∫
X
f dx ≤ lim inf

∫
X
fn dx,

and the theorem follows. �

Note that Fatou’s lemma has a weaker hypothesis than the Lebesgue Convergence theorem, and
as a result its conclusion is also weaker. The advantage of Fatou’s lemma is that it is applicable
even if f is not known to be integrable and so it is often a good way of showing that f is integrable.


