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REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

4. Lp spaces and their relatives

In this section we consider properties of function spaces, i.e., collections of functions defined
on Euclidean domains that satisfy certain integrability or differentiability conditions. These are
important examples of general spaces studied in functional analysis: Banach spaces, topological
vector spaces, Fréchet spaces, etc. All integrals in this section will be with respect to the Lebesgue
measure.

4.1. Lp spaces.

Definition 4.1. For a domain Ω ⊂ RN and a real number p, 1 ≤ p <∞, a measurable function f
is said to be of class Lp(Ω) if

∫
Ω |f |

p <∞.

Since |f + g|p ≤ 2p(|f |p + |g|p) for all p, the space Lp = Lp(Ω) of all Lp-functions is a vector
space. Define

(1) ||f ||p =

(∫
Ω
|f |p

)1/p

.

Clearly, ||c f || = |c| ||f || for all f ∈ Lp and c ∈ R, and ||f || = 0 if and only if f = 0 a.e. on
Ω. In Theorem 4.3 below we will show that ||f + g||p ≤ ||f ||p + ||g||p. Thus, (1) defines a norm
on Lp. Note that since ||f || = 0 only implies that f vanishes everywhere except a set of measure
zero, one should understand elements of the space Lp as equivalence classes of functions satisfying
Definition 4.1 with respect to the equivalence relation given by f ∼ g ⇔ f = g a.e.

For p =∞ we define the space L∞(Ω) of bounded functions (more precisely essentially bounded)
functions with the norm

||f ||∞ = ess sup
x∈Ω
|f(x)| = sup {r ∈ R : m({x : |f(x)− r| < ε}) > 0 for all ε > 0} .

Theorem 4.2 (Hölder’s inequality). If p, q ≥ 1 satisfy 1/p+ 1/q = 1, and f ∈ Lp, g ∈ Lq, then∫
|fg| ≤ ||f ||p ||g||q.

(If p = 1, we assume that q =∞.)

Proof. We will leave the case p = 1, q = ∞ as an exercise for the reader, and assume that p > 1.
We first establish so-called Young’s inequality: for a, b > 0 and p and q as in Theorem 4.2, we have

ab ≤ ap

p
+
bq

q
.

To see that let t = 1/p, so 1− t = 1/q. Then, since log is a strictly concave function,

log(tap + (1− t)bq) ≥ t log(ap) + (1− t) log(bq) = log a+ log b = log(ab),

from which the required inequality follows.
1
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Now for the proof of Hölder’s inequality, we may divide the functions f and g by their norms in
the corresponding spaces, so we may assume that ||f ||p = ||g||q = 1. Using Young’s inequality, we
have

|f(x)g(x)| ≤ |f(x)|p

p
+
|g(x)|q

q
, x ∈ Ω.

Integrating the above inequality over Ω gives

||f(x)g(x)||1 ≤ 1/p+ 1/q = 1,

which is what was needed to prove. �

The next theorem is essentially a corollary of Hölder’s inequality.

Theorem 4.3 (Minkowski’s inequality). For any p ≥ 1,

||f + g||p ≤ ||f ||p + ||g||p.

Proof. When p = 1 or p =∞ the inequality is trivial. For 1 < p <∞ we write

|f(x) + g(x)|p = |f(x) + g(x)| · |f(x) + g(x)|p−1 ≤ |f(x)| · |f(x) + g(x)|p−1 + |g(x)| · |f(x) + g(x)|p−1.

Integrating over Ω we obtain

||f + g||pp ≤
∫
|f | · |f + g|p−1 +

∫
|g| · |f + g|p−1.

We now apply Hölder’s inequality to both terms on the right. The first one yields∫
|f | · |f + g|p−1 ≤ ||f ||p

∣∣∣∣∫ |f + g|(p−1) p
p−1

∣∣∣∣ p−1
p

≤ ||f ||p · ||f + g||p−1
p .

Similarly, the second term give∫
|g| · |f + g|p−1 ≤ ||g||p · ||f + g||p−1

p .

Combining everything together yields

||f + g||pp ≤ ||f ||p · ||f + g||p−1
p + ||g||p · ||f + g||p−1

p = (||f ||p + ||g||p) · ||f + g||p−1
p ,

From this the result follows. �

Another consequence of Hölder’s inequality is the following. Let m(Ω) < +∞ and f ∈ Lp(Ω).
Setting g = 1, we obtain

‖ f ‖L1(Ω)≤ (m(Ω))1/q ‖ f ‖Lp(Ω) .(2)

Definition 4.4. For p ≥ 1, we say that a sequence {fn} ⊂ Lp converges to a function f ∈ Lp in
norm, if for every ε > 0 there exists N > 0 such that for all n > N , we have ||f − fn||p < ε.

If a series
∑
fn of elements of Lp converges to an Lp-function we say that the series is summable.

We call
∑
fn absolutely summable if

∑
n ||fn|| < ∞. (An absolutely convergent series of real

numbers always converges, but this is not true in general when one considers series of elements of
a normed space.)

Lemma 4.5. A normed space (X, || · ||) is complete if and only if every absolutely summable series
is summable.

We leave the proof of the lemma as an exercise for the reader. Using the lemma we now can
proof the following result.
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Theorem 4.6 (Riesz-Fischer theorem). for all 1 ≤ p < ∞, the space Lp equipped with the norm
|| · ||p is a Banach space.

Proof. We only need to prove that Lp is complete, i.e., that every Cauchy sequence in Lp converges
in norm to an element of Lp. By Lemma 4.5, it suffices to show that every absolutely summable
series is summable. Suppose that {fn} is such that

∑
||fn||p = M <∞. Define

gn(x) =
n∑

k=1

|fk(x)|.

By Minkowski’s inequality we have

||gn||p ≤
n∑
1

||fk||p ≤M,

and so
∫
gpn ≤ Mp. For each x, the sequence {gn(x)} is an increasing sequence of extended real

numbers (i.e., including the value ∞), and so it must converge to an extended real number g(x).
Then g(x) is a measurable function, and since gn ≥ 0,

∫
gp ≤ Mp by Fatou’s lemma. It follows

that gp is integrable, and so g(x) is finite for a.e. x. For every x such that g(x) < ∞, the series∑∞
1 fk(x) converges absolutely, so in particular, it converges to a real number s(x). We set s(x) = 0

for those x where g(x) =∞. Thus we constructed a function s(x) which is the limit a.e. of partial
sums sn =

∑n
1 fk. It follows that s is measurable, and since |sn(x)| ≤ |g(x)|, we have s(x) ≤ g(x).

Consequently, s ∈ Lp, and
|sn(x)− s(x)|p ≤ 2p[g(x)]p.

Since 2pgp is integrable, and |sn(x)− s(x)|p → 0, we have by the Lebesgue Convergence theorem,∫
|sn − s|p → 0.

Therefore, ||sn − s||p → 0, which proves the theorem. �

Let us now describe some natural dense subsets of Lp(Rn).

Proposition 4.7. Let Ω be a bounded measurable subset of Rn. Then the set of all functions
continuous on Rn is dense in L1(Ω).

Proof. It follows from the definition of the Lebesgue integral that the space of integrable simple
functions on X is dense in L1(Ω). Furthermore, every simple function is a linear combination
of characteristic functions of some measurable subsets of Ω. Hence it suffices to show that the
characteristic function χY of a set Y of finite measure is a limit in L1 of a sequence of continuous
functions. From the definition of the Lebesgue measure for any given ε > 0 there exists an open
subset G ⊃ Y in Rn such that m(G\Y ) < ε/2. This also implies that there exists a closed subset
F ⊂ Y in Rn such that m(G)−m(F ) < ε. Consider now the function

ϕε(x) =
d(x,Gc)

d(x,Gc) + d(x, F )
,

where d is the Euclidean distance from x to the set which is the second argument of the function.
The function ϕε is continuous on Rn since the denominator is strictly positive. Furthermore, ϕε

vanishes on Gc, the complement of G, and is identically equal to 1 on F . Hence,∫
Rn

|χY − ϕε| ≤ ε

which proves the proposition. �
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This easily implies that L1(Ω) is a separable space. Indeed, the space of polynomials with rational
coefficients is dense in the space of continuous functions (the Weierstrass theorem). One can also
show that Lp(Ω) is separable for 1 ≤ p < ∞. It is also easy to see that this remains true even if
m(Ω) = +∞.

4.2. Topological vector spaces and their duals.

Definition 4.8. If a vector space X (over the field of reals) is equipped with some topology, we
called X a topological vector space if the map X ×X → X corresponding to vector addition in X
and the map R×X → X corresponding to scalar multiplication are both continuous.

Sometimes it is required that the topology on X is Hausdorff. This is always the case if the
topology comes from a metric (in particular, from a norm) on X.

Example 4.1. We give some examples of topological vector spaces.

(i) The space Lp is a topological vector space for any p ≥ 1 (prove it!).
(ii) The space C[0, 1] of continuous functions on the interval [0, 1]. One can show that this is a

Banach space equipped with the norm ||f || = supx∈[0,1] |f(x)|. In fact, any normed space,
complete or not, is a topological vector space.

(iii) The next is an example of a topological vector space which is not a normed space. Consider
the space C∞([0, 1]) of smooth functions on [0, 1]. The topology on C∞([0, 1]) can be
described as follows. For every integer k ≥ 0 we define a semi-norm

‖f‖k = sup
x∈[0,1]

{|f (k)(x)| : x ∈ [0, 1]}.

Here f (k) is the derivative of f of order k. That || · ||k is a semi-norm, rather than a norm,
means that ||f ||k = 0 may hold for nonzero functions, for example any constant c satisfies
||c||1 = 0. The space C∞([0, 1]) a complete metric space with the metric given by

(3) d(f, g) =
∞∑
k=0

2−k
‖f − g‖k

1 + ‖f − g‖k
f, g ∈ C∞([0, 1]).

Topological vector spaces equipped with a complete metric that comes from a countable
collection of semi-norms are called Fréchet spaces.

�

Recall that a functional over a vector space X is a linear map φ : X → R.

Definition 4.9. Given a topological vector space X, the space of continuous linear functionals is
called the dual space of X, and denoted by X∗.

One can show that if a topological vector space X is finite-dimensional, then every linear map
on X is continuous. For infinite-dimensional vector spaces continuity of a functional is a nontrivial
condition.

Example 4.2.

(i) For a space Lp, p ≥ 1, choose some g ∈ Lq with 1/p+1/q = 1. Then the map φg : Lp → R,
given by

(4) φg(f) = 〈φg, f〉 =

∫
fg,

is a continuous linear functional on Lp.
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(ii) On C[−1, 1] the map I given by I(f) =
∫ 1
−1 fdx is a continuous linear functional. Another

example of a continuous linear functional on C[0, 1] is given by δ0(f) = f(0). This is the
famous Dirac delta-function.

(iii) On C∞[−1, 1] consider the map Φ : C∞[−1, 1]→ R given by

〈Φ, f〉 = δ0(f) +
∂f

∂x
(0).

Continuity of this functional can be verified from the convergence on the space C∞[−1, 1]
given by the metric in (3).

Lemma 4.10. Let X be a topological vector space, and φ be a linear functional. Then φ ∈ X∗ if
and only if φ is continuous at some point x ∈ X.

Proof. For the proof in the nontrivial direction, let y ∈ X be arbitrary. For a given ε > 0, choose
a neighbourhood U of x such that

|φ(x)− φ(x′)| < ε, for all x′ ∈ U.

Then the set V = U + (y − x) is a neighbourhood of y. If z ∈ V , then z + x− y ∈ U , and so

|φ(z)− φ(y)| = |φ(z − y + x)− φ(x)| < ε,

which shows continuity of φ at y. �

Thus, it suffices to test continuity of a functional at one point, for example, at the origin. Using
this, one can show that continuity of a functional on a topological vector space is equivalent to its
boundedness in some neighbourhood of the origin.

The dual space is itself a topological vector space. Its topology can be defined as follows. We
say that a sequence φn ∈ X∗ converges to φ ∈ X∗ if for any x ∈ X, we have limφn(f) = φ(f). This
is the so-called weak∗ topology. It is the weakest topology that makes the pairing X ×X∗ → R a
continuous operation.

For a normed space X its dual space is also normed. The norm on X∗ is given by

||φ||∗ = sup
f∈X\{0}

|φ(f)|
‖f‖

.

For example, if g ∈ Lq, then the functional φg given by (4) has the norm which is equal to that of
g: ||φg||∗ = ||g||q. Indeed, by Hölder’s inequality,∣∣∣∣∫ fg

∣∣∣∣ ≤ ∫ |fg| ≤ ||f ||p ||g||q,
which shows that ||φg||∗ ≤ ||g||q. On the other hand, if f = |g|q/p sgn g, then |f |p = |g|q = f g, and

so ||f ||p = ||g||q/pq . Therefore,

〈g, f〉 =

∫
f g =

∫
|g|q = (||g||q)q = ||g||q ||f ||p,

which proves our assertion. In fact, the following holds.

Theorem 4.11 (Riesz Representation theorem). A linear map φ : Lp → R is a continuous linear
function on Lp if and only if there exists g ∈ Lq, 1/p+ 1/q = 1, such that for all f ∈ Lp,

〈φ, f〉 =

∫
g f.
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We do not give the proof of this theorem. Observe that now we have two topologies on the space
Lq: the normed topology and the weak∗ topology. These two are not the same, with weak∗ being
weaker than the normed topology (sometimes called the strong topology), i.e., weak∗ topology has
fewer opens sets. To see this it is enough to construct an example of a sequence in Lq that converges
weakly, but not in norm. Consider the space L2(0, 1) which is the dual of itself, and consider the
sequence

φn(x) =

{√
n, x ∈ (0, 1

n),

0, x ∈ [ 1
n , 1)

.

Clearly, φn ∈ L2(0, 1), and φn(x)→ 0 point-wise on (0, 1) as n→∞. We use the following fact: if
a sequence φn converges to φ pointwise and converges to a function φ′ in norm, then φ = φ′ (prove
it!). From this it follows that the sequence φn does not converge in norm, since for any n we have

||φn − 0||2 =

(∫ 1

0
φ2
n

)1/2

=

(∫ 1/n

0
n

)1/2

= 1.

But φn converges to 0 in weak∗ topology because for any f ∈ L2(0, 1),

〈φn, f〉 =

∫ 1

0
φnf =

∫ 1/n

0

√
n f ≤

(∫ 1/n

0
f

)1/2

,

by Hölder’s inequality. As n → ∞ the right hand-side in the above formula converges to zero for
every f ∈ L2, which gives weak convergence φn → 0. On the other hand, by Hölder’s inequality,
convergence in norm always implies convergence in weak∗ topology.

4.3. Product spaces and Fubini’s theorem. Let (RN ,m) and (Rn, µ) be the Euclidean spaces
with the corresponding Lebesgue measures. Then on the space RN ×Rn = RN+n we may define a
new measure λ as follows: If A ⊂ RN and B ⊂ Rn are measurable, then

λ(A×B) := m(A) · µ(B).

One can show that λ can be extended from the collection of product sets in RN+n to a wide class
of sets in RN+n. In fact, one can prove that the measure λ obtained this way is nothing but the
Lebesgue measure on RN+n.

The following theorem gives sufficient conditions that allows one to replace an integral with
respect to a product measure by an iterated integral. We use dx (resp. dy) to denote integration
with respect to measure m (resp. µ), and dx dy to denote integration with respect to λ.

Theorem 4.12 (Fubini’s theorem). Let X × Y ⊂ (RN ,m) × (Rn, µ) be measurable, and f ∈
L1(X × Y, λ). Then

(i) for a.e. x, the function fx(y) = f(x, y) is integrable on Y ;
(ii) for a.e. y, the function fy(x) = f(x, y) is integrable on X;
(iii) the function x→

∫
Y fx(y)dy is integrable on X;

(iv) the function y →
∫
X fy(x)dx is integrable on Y ;

(v)
∫
X

[∫
Y fx(y)dy

]
dx =

∫
X×Y f(x, y)dx dy =

∫
Y

[∫
X fy(x)dx

]
dy.

For the proof of Fubini’s theorem one can reduce the problem to simple functions and then use
the Lebesgue convergence theorem. We omit the details. Below we state a variation of Fubini’s
theorem that does not require integrability of the function f .

Theorem 4.13 (Tonelli’s theorem). Let X×Y ⊂ (RN ,m)×(Rn, µ) be measurable, and f : X×Y →
R be a nonnegative measurable function. Then
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(i) for a.e. x, the function fx(y) = f(x, y) is measurable on Y ;
(ii) for a.e. y, the function fy(x) = f(x, y) is measurable on X;
(iii) the function x→

∫
Y fx(y)dy is measurable on X;

(iv) the function y →
∫
X fy(x)dx is measurable on Y ;

(v)
∫
X

[∫
Y fx(y)dy

]
dx =

∫
X×Y f(x, y)dx dy =

∫
Y

[∫
X fy(x)dx

]
dy.

In the remaining part of the subsection we discuss another property of product spaces: possibility
of interchanging integration and differentiation.

Lemma 4.14. Let X × Y ⊂ RN × Rn be a product of open subsets, and let m(X) < ∞. Suppose
f(x, y) : X × Y → R is uniformly continuous on the closure of X × Y . Then the function

(5) F (y) =

∫
X
f(x, y)dx

is continuous on Y .

Proof. Uniform continuity of f on X × Y means that for any ε > 0 there exists δ > 0 such that

|f(x, y)− f(x′, y′)| < ε ⇐= |(x, y)− (x′, y′)| < δ.

Then,

|F (y)− F (y′)| =
∣∣∣∣∫

X
f(x, y)− f(x, y′)dx

∣∣∣∣ ≤ ∫
X
|f(x, y)− f(x, y′)|dx ≤ εm(X),

which proves continuity of F . �

The next theorem gives a sufficient condition under which we can differentiate under the integral
sign. It can also be interpreted as commutativity of the operations of integration and differentiation
under the given assumptions.

Theorem 4.15. Let X,Y be as in the previous lemma. Assume that for some 1 ≤ i ≤ m, the
functions f(x, y) and ∂f

∂yi
are uniformly continuous on the closure of X × Y . Then the function

F (y) defined by (5) is of class C1(Y ), and

∂F

∂yi
(y) =

∫
X

∂f

∂yi
(x, y)dx.

Proof. Let y0 ∈ Y be arbitrary. For h = (0, . . . , 0, hi, 0, . . . , 0) ∈ Rm by the Mean Value theorem
we have

F (y0 + h)− F (y0)

hi
=

∫
X

f(x, y0 + h)− f(x, y0)

hi
dx =

∫
X

∂f

∂yi
(x, y0 + θh)dx, θ ∈ (0, 1).

Note that θ depends on x. Since ∂f
∂yi

is uniformly continuous on X × Y , for any ε > 0 there exists

δ > 0 such that ∣∣∣∣ ∂f∂yi (x, y)− ∂f

∂yi
(x, y0)

∣∣∣∣ < ε ⇐= |y − y0| < ε.

Thus, for |h| = |hi| < δ, we have∣∣∣∣F (y0 + h)− F (y0)

hi
−
∫
X

∂f

∂yi
(x, y0)dx

∣∣∣∣ =

∣∣∣∣∫
X

(
∂f

∂yi
(x, y0 + θh)− ∂f

∂yi
(x, y0)

)
dx

∣∣∣∣ ≤∫
X

∣∣∣∣ ∂f∂yi (x, y0 + θh)− ∂f

∂yi
(x, y0)

∣∣∣∣ dx ≤ εm(X).
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This shows that

lim
hi→0

F (y0 + h)− F (y0)

hi
=

∫
X

∂f

∂yi
(x, y0)dx.

Finally, the continuity of ∂F
∂yi

follows from the lemma. �


