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REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

5. Divergence theorem and consequences

5.1. Integration on hypersurfaces. By a hypersurface Γ of class Ck in Rn, k ∈ Z+, we mean
a compact subset of Rn admitting a finite covering by open connected subsets Uj : Γ ⊂ ∪Nj=1Uj ,

with the following property: For every j there exists a function ρj ∈ Ck(Uj) such that the gradient

∇ρj(x) = (
∂ρj
∂x1

, ...,
∂ρj
∂xn

) does not vanish in Uj and Γ ∩ Uj = {x ∈ Uj : ρj(x) = 0}. Such a
function ρj is called a local defining function of Γ. Very often we will deal with the case when

Γ = {x ∈ Rn : ρ(x) = 0, ∇ρ 6= 0}, where ρ is a Ck-function on Rn.
Another way to define a hypersurface is through parametrization. Let D be an open connected

subset of Rn−1 and Φ = (Φ1, ...,Φn) : D → Rn be an injective map of class Ck(D). The hypersurface
Γ = Φ(D) is called a parametrized hypersurface.

Example 5.1. On R2 with coordinates (x, y) consider for some k ∈ Z+

ρ(x, y) =

{
y, for x ≤ 0,

y − xk, for x > 0
.

Then Γ ⊂ R2 given by ρ(x, y) = 0 is a hypersurface of class Ck−1. It admits a global Ck−1-smooth
parametrization Φ : R→ Γ given by x 7→ (x, xk) for x > 0, and x 7→ (x, 0) for x ≤ 0. �

Let now Ω be a bounded domain (an open connected subset) of Rn with the boundary ∂Ω
consisting of a finite number of disjoint hypersurfaces Γk of class C1. A local defining function ρj
for Γk as defined above is called a local defining function of Ω if Ω ∩ Uj = {x ∈ Uj : ρj(x) < 0}.
Then the gradient vector ∇ρj(x) defines the outward-pointing normal direction to ∂Ω at a point
x ∈ ∂Ω. We denote by

~n(x) :=
∇ρ(x)

|∇ρ(x)|
the unit vector in the outward-pointing normal direction. Let p = (p1, ..., pn) be a boundary point
of Ω and ρ be a local defining function of ∂Ω near p. Since ∇ρ(p) 6= 0, then ∂ρ(p)/∂xk 6= 0 for
some 1 ≤ k ≤ n. By the Implicit Function theorem there exists a neighbourhood U of p, a function
ψ of class C1 such that

(1) ∂Ω ∩ U = {x ∈ U : xk = ψ(x1, ..., xk−1, xk+1, ..., xn)}.
Shrinking U if necessary we may assume that U = U ′ × U ′′, where U ′ is a ball in the space Rn−1

centred at (p1, ..., pk−1, pk+1, ..., pn) and U ′′ is an interval in R centred at pk. This representation
allows us to view (x1, ..., xk−1, xk+1, ..., xn) as local coordinates on ∂Ω: the projection

πk : x 7→ (x1, ..., xk−1, xk+1, ..., xn)

πk : ∂Ω ∩ U −→ U ′

is bijective. We point out that

π−1
k (x1, ..., xk−1, xk+1, ..., xn) = (x1, ..., xk−1, ψ(x1, ..., xk−1, xk+1, ..., xn), xk+1, ..., xn)
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for (x1, ..., xk−1, xk+1, ..., xn) ∈ U ′. The map π−1
k : U ′ → ∂Ω ∩ U is clearly a local parametrization

of the hypersurface ∂Ω. We call U a coordinate neighbourhood of p.

Example 5.2. The upper hemisphere S+ = S2 ∩ {z > 0} in R3 with coordinates (x, y, z) is the

graph of the function z =
√

1− x2 − y2. The unit normal vector to S+ at a point (x, y, z) ∈ S+ is
~n = (x, y, z). �

Now let f be a continuous (this assumption can be considerably weakened) function on ∂Ω. Our
goal is to define the integral of f over ∂Ω as a surface integral . If an open set X ⊂ ∂Ω admits a
parametrization Φ : D → Rn, Φ(D) = X ⊂ ∂Ω then we define

(2)

∫
X
f(x)dS =

∫
D
f ◦ Φ(t)| ~N |dt,

where the coordinates of the vector ~N are determined from ~N = |det(∇Φ1, ...,∇Φn, ~e )|. Here
~e = (~e1, . . . , ~en) is a formal vector whose coordinates are the vectors of the standard basis in Rn.

In fact, one can show that ~N is the normal vector to X ⊂ ∂Ω.
Now if U is a coordinate neighbourhood where ∂Ω admits representation as in (1) and X is an

open subset in ∂Ω ∩ U then

(3)

∫
X
fdS =

∫
πk(X)

f ◦ π−1
k (1+ ‖ ∇ψ ‖2)1/2dx1...dxk−1dxk+1...dxn.

Both definitions agree because (1+ ‖ ∇ψ ‖2)1/2 is just the length of the normal vector

(4) ~N =

(
∂ψ

∂x1
, ..., 1, ...,

∂ψ

∂xn

)
,

(here 1 is on the k-th position) corresponding to the local parametrization of ∂Ω. We refer to dS
or the equivalent expression in a local parametrization as the hypersurface area measure (or the

element of the surface area in some literature). Let νk be the angle between ~n = ~N/ ‖ ~N ‖ and the
vector ~ek (the k-th vector of the standard base of Rn). Then

cos νk = (~ek, ~n) = (1+ ‖ ∇ψ ‖2)−1/2.

Thus,

(5)

∫
X
fdS =

∫
πk(X)

f ◦ π−1
k

1

cos νk
dx1...dxk−1dxk+1...dxn.

If f ≡ 1, then the integral
∫
X dS represents the area ofX. This terminology comes from R3, where

the integral is indeed the area of a surface, while for n > 3, it is actually the (n − 1)-dimensional
volume.

Example 5.3. Consider the surface integral of a continuous function f(x, y, z) over the upper

hemisphere S+ = S2∩{z > 0} ⊂ R3. First we use the parametrization z = ψ(x, y) =
√

1− x2 − y2

for x2 + y2 < 1. Then

|1 + |∇ψ|2| = 1 +
x2

1− x2 − y2
+

y2

1− x2 − y2
=

1

1− x2 − y2
.

Therefore, from (3) we obtain∫
S+

fdS =

∫
{x2+y2<1}

f(x, y,
√

1− x2 − y2)
dxdy√

1− x2 − y2
.
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Now we use the parametrization of S+ that comes from the spherical coordinates. Let Φ : R2 → R3

be given by

Φ(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ).

Then Φ ((0, π/2)× (0, 2π)) = S+ (excluding a set of measure 0). To apply (2) we first compute
vectors of partial derivatives with respect to θ and φ. We have

Φθ = (cos θ cosφ, cos θ sinφ,− sin θ), Φφ = (− sin θ sinφ, sin θ cosφ, 0).

Then

~N =

∣∣∣∣∣∣
~e1 ~e2 ~e3

cos θ cosφ cos θ sinφ − sin θ
− sin θ sinφ sin θ cosφ 0

∣∣∣∣∣∣ = sin θ(cosφ sin θ, sinφ sin θ, cos θ),

and so | ~N | = sin θ. We conclude that∫
S+

fdS =

∫
(0,π/2)×(0,2π)

f(sin θ cosφ, sin θ sinφ, cos θ) sin θ dθ dφ.

That both integrals agree can be verified, for example, by calculating the surface area of S+ using
these two representations of the surface integral. �

Finally, if Uj is an open covering of ∂Ω by coordinate neighbourhoods, we set Xk = Uk\∪k−1
j=1 Uj

so that ∂Ω = ∪Xk and Xk are disjoint. Then we set∫
∂Ω
fdS =

∑
k

∫
Xk

fdS.

One can view this as a definition of the surface integral over ∂Ω. It is not difficult to verify
that the integral is well-defined, i.e., it is independent of the choice of the covering by coordinate
neighbourhoods, local defining functions, etc. We leave this verification as an exercise for the
reader.

5.2. Divergence theorem. The following theorem connects the integral over a domain Ω with
the surface integral over its boundary Ω. It was discussed in some form in the work of Lagrange,
Gauss, and most notably Ostrogradski, who gave a proof that would be considered complete by
modern standards. It is sometimes referred to as Gauss-Ostrogradski theorem.

Recall that a vector field F on a domain Ω ⊂ Rn is simply a map F : Ω → Rn. The geometric
interpretation of a vector field (which becomes nontrivial and important when one considers abstract
manifolds) is that at each point x ∈ Ω the value F (x) is thought of as a vector in Rn originating
at x. For example, given a function f : Ω → R, the gradient ∇f is a vector field on Ω. Another

example is a vector field given by (4) assigning to every boundary point of ∂Ω a normal vector ~N

to Ω. The divergence of a vector field F is defined as div ~F = ∂F1
∂x1

+ ...+ ∂Fn
∂xn

.

Theorem 5.1 (Divergence theorem). Let Ω be a bounded domain in Rn with the boundary of class

C1. Let ~F = (F1, ...., Fn) be a a vector field of class C(Ω) ∩ C1(Ω). . Then∫
Ω
div ~Fdx =

∫
∂Ω

(~F , ~n)dS,(6)

where (a, b) denotes the usual scalar product of two vectors in Rn and ~n denotes the vector field of
the outward-pointing unit normals to ∂Ω.

For n = 1 the Divergence theorem becomes the Fundamental Theorem of Calculus.
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Proof. For simplicity of notation we assume that n = 3, the proof in the general case is completely
analogous. We will assume that Ω = {(x, y, z) : (x, y) ∈ D, ψ1(x, y) < z < ψ2(x, y)}, where
D is a domain in R2, and ψ and φ are smooth functions on D. Moreover, we assume that a
similar representation is also valid for projections onto the other two coordinate planes. Such
domains sometimes are called simple. If the domain Ω is not simple in all three directions, then
we may divide it into smaller domains Ωi which are simple. Adding the results for each i gives the
Divergence theorem for Ω and ∂Ω. Indeed, since after splitting Ω the surface integrals over the
newly introduced boundaries occur twice with the opposite normal vectors ~n, their sum is equal to
zero, and we end up with the surface integral over the original ∂Ω.

Denote by Γj the surface

Γj = {(x, y, ψj(x, y)) ∈ R3 : (x, y) ∈ D}, j = 1, 2.

Then, by Fubini’s theorem,∫
Ω

∂F3(x, y, z)

∂z
dxdydz =

∫
D

(∫ ψ2(x,y)

ψ1(x,y)

∂F3(x, y, z)

∂z
dz

)
dxdy =∫

D
F3(x, y, ψ2(x, y))dxdy −

∫
D
F3(x, y, ψ1(x, y))dxdy =

∫
Γ1∪Γ2

F3(x, y, z) cos ν3dS,

where ν3 is the angle between the vector ~e3 and the normals (∂ψ2

∂x ,
∂ψ2

∂y , 1) when (x, y, z) ∈ Γ2 and

(−∂ψ1

∂x ,−
∂ψ2

∂y ,−1) when (x, y, z) ∈ Γ1 respectively. In the last step we used (5).

Let now Γ3 = {(x, y, z) : (x, y) ∈ ∂D,ψ1(x, y) < z < ψ2(x, y)} be the “vertical” part of ∂Ω.
Let ν3 still denote the angle between Γ3 and the outward-pointing unit normal vector to Γ3. Then
ν3 = π/2 and cos ν3 = 0. Then ∫

Γ3

F3(x, y, z) cos ν3dS = 0.

Since ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 we can write∫
∂Ω
F3(x, y, z) cos ν3dS =

∫
Γ1∪Γ2

F3(x, y, z) cos ν3dS,

and therefore, ∫
Ω

∂F3(x, y, z)

∂z
dxdydz =

∫
∂Ω
F3(x, y, z) cos ν3dS.(7)

Similarly, we establish the formulas∫
Ω

∂F1(x, y, z)

∂x
dxdydz =

∫
∂Ω
F1(x, y, z) cos ν1dS,(8)

and ∫
Ω

∂F2(x, y, z)

∂y
dxdydz =

∫
∂Ω
F2(x, y, z) cos ν2dS,(9)

where ν1 and ν2 are angles between the outward-pointing unit normal to ∂Ω and the standard base
vectors ~e1 and ~e2. Taking the sum in (7), (8), (9) we obtain∫

Ω
div ~Fdx =

∫
∂Ω

(F1(x, y, z) cos ν1 + F2(x, y, z) cos ν2 + F3(x, y, z) cos ν3,(10)

which is precisely (6) for dimension 3. �
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In conclusion we mention some useful consequence of the Divergence theorem. Let f be a function

of class C(Ω) ∩ C1(Ω). Applying the Divergence theorem to the vector field ~F = f~ek we obtain∫
Ω

∂f

∂xk
(x)dx =

∫
∂Ω
f(x)(~ek, ~n(x))dS.(11)

Let f = u · v. Then, since
∂u

∂xk
v =

∂(uv)

∂xk
− u ∂v

∂xk
,

formula (11) gives∫
Ω

∂u

∂xk
(x)v(x)dx =

∫
∂Ω
u(x)v(x)(~ek, ~n(x))dS −

∫
Ω
u
∂v

∂xk
dx,(12)

which is just the multidimensional integration by parts formula. Since (~ek, ~n) = cos νk, where νk is
the angle between vectors ek and ~n, the integration by parts formula can be rewritten as∫

Ω

∂u

∂xk
(x)v(x)dx =

∫
∂Ω
u(x)v(x) cos νkdS −

∫
Ω
u
∂v

∂xk
dx.

Recall that the Laplacian of a C2-smooth function u(x1, . . . , xn) is the function ∆u =
∑n

j=1
∂2u
∂x2j

(x).

Consider now two functions u and v of class C2(Ω)∩C1(Ω) such that their Laplacians ∆u and ∆v
are integrable in Ω. Clearly,

∆u = div(∇u).

Furthermore, for every boundary point x ∈ ∂Ω the scalar product (∇u(x), ~n(x)) coincides with the
directional derivative ∂u

∂~n . On the other hand,

v∆u = vdiv(∇u) = div(v∇u)− (∇u,∇v).

Integrating this identity over Ω and applying the Divergence theorem we obtain the first Green’s
formula: ∫

Ω
v∆udx =

∫
∂Ω
v
∂u

∂~n
dS −

∫
Ω

(∇u,∇v)dx.(13)

Similarly we have ∫
Ω
u∆vdx =

∫
∂Ω
u
∂v

∂~n
dS −

∫
Ω

(∇v,∇u)dx.

Subtracting this last equality from (13) we obtain the second Green’s formula∫
Ω

(v∆u− u∆v)dx =

∫
∂Ω

(
v
∂u

∂~n
− u∂v

∂~n

)
dS.(14)

5.3. Change of variables in the integral. The following theorem is the multidimensional version
of the substitution rule in the integral.

Theorem 5.2. Let Φ : Ω̄′ → Ω̄ be a C1-diffeomorphism between two domains in Rn with C1-smooth
boundary, and let f ∈ L1(Ω). Then∫

Ω
f(x)dx =

∫
Ω′
f ◦ Φ(y)|JΦ(y)|dy,

where |JΦ| denotes the determinant of the differential (Jacobian matrix) of the map Φ.
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Proof. We will give the proof for n = 3. Assume that the coordinates in Ω are (x, y, z) and (u, v, w)
in Ω′. Suppose ∂Ω is parametrized by a function

φ(s, t)→ (x(s, t), y(s, t), z(s, t)), (s, t) ∈ D ⊂ R2.

Then after substituting φ into Φ, the hypersurface ∂Ω′ is given by some function

(s, t)→ (u(s, t), v(s, t), w(s, t)).

Define the function

F (x, y, z) =

∫ z

0
f(x, y, ξ)dξ.

Then ∂F
∂z = f in Ω. We will use the notation ∂(x,y)

∂(s,t) to denote the determinant of the Jacobian

matrix obtained by taking partial derivatives of the functions x(s, t) and y(s, t) with respect to
variables (s, t). Similar notation will be used for any other collection of functions and variables.
Set

~N = (N1, N2, N3) =

(
∂(y, z)

∂(s, t)
,
∂(z, x)

∂(s, t)
,
∂(x, y)

∂(s, t)

)
,

and

~N ′ = (N ′1, N
′
2, N

′
3) =

(
∂(v, w)

∂(s, t)
,
∂(w, u)

∂(s, t)
,
∂(u, v)

∂(s, t)

)
.

We claim that

(15) N3 =
∂(Φ1,Φ2)

∂(v, w)
N ′1 +

∂(Φ1,Φ2)

∂(w, u)
N ′2 +

∂(Φ1,Φ2)

∂(u, v)
N ′3.

This can be verified by writing

x = Φ1(u(s, t), v(s, t), w(s, t)), y = Φ2(u(s, t), v(s, t), w(s, t)),

differentiating these equations with respect to s and t and then substituting into N3 = xsyt− xtys.
The vectors ~N and ~N ′ are normal to ∂Ω and ∂Ω′ respectively, say, N is the outward-pointing

normal to ∂Ω, and ~N ′ is the inward-point normal to ∂Ω′. Then

(16) ~n = ~N/| ~N | and ~n′ = − ~N ′/| ~N ′|
are the corresponding unit normal vectors. By the Divergence theorem,∫

Ω
f dx dy dz =

∫
Ω

∂F

∂z
dx dy dz =

∫
∂Ω
F cos(e3, ~n)dS =

∫
D
FN3 ds dt.

Substitution of N3 from (15) gives∫
Ω
f dx dy dz =

∫
D
F

(
∂(Φ1,Φ2)

∂(v, w)
N ′1 +

∂(Φ1,Φ2)

∂(w, u)
N ′2 +

∂(Φ1,Φ2)

∂(u, v)
N ′3

)
ds dt.

Since the surface measure on ∂Ω′ is given by dS′ = | ~N ′| ds dt and since

(N ′1, N
′
2, N

′
3) =

(
−| ~N ′| cos(e1, ~n

′),−| ~N ′| cos(e2, ~n
′),−| ~N ′| cos(e3, ~n

′)
)
,

we get∫
Ω
f dx dy dz = −

∫
∂Ω′

F

(
∂(Φ1,Φ2)

∂(v, w)
cos(e1, ~n

′) +
∂(Φ1,Φ2)

∂(w, u)
cos(e2, ~n

′) +
∂(Φ1,Φ2)

∂(u, v)
cos(e3, ~n

′)

)
dS′.

Evaluating the last surface integral by the divergence theorem, and using the relation

∂

∂u

[
F
∂(Φ1,Φ2)

∂(v, w)

]
+

∂

∂v

[
F
∂(Φ1,Φ2)

∂(w, u)

]
+

∂

∂w

[
F
∂(Φ1,Φ2)

∂(u, v)

]
= f

∂(Φ1,Φ2,Φ3)

∂(u, v, w)
= fJΦ,
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we finally obtain ∫
Ω
f dx dy dz = −

∫
Ω′
fJφdu dv dw.

Since the Jacobian does not vanish in Ω′, it is either positive or negative. Taking f ≡ 1 we see that
it is negative for our choice of the sign in the normal vectors in (16). Therefore, −JΦ = |JΦ|. The
proof for other choices of sign in (16) is similar. �

Example 5.4. Consider again the spherical coordinates in Rn:

Φ : (r, θ1, ..., θn−1) 7→ (x1, ..., xn),

Φ : (0,+∞)× (0, π)× ...× (0, π)× (0, 2π),

where

x1 = r cos θ1,

x2 = r sin θ1 cos θ2,

.....................................

xn−1 = r sin θ1 sin θ2... sin θn−2 cos θn−1,

xn = r sin θ1 sin θ2... sin θn−1.

Then, for a domain D ⊂ Rn,∫
D
f(x)dx =

∫
Φ−1(D)

f ◦ Φ(r, θ)rn−1(sin θ1)n−2... sin θn−2drdθ1...dθn−1.

If Γ = RSn−1 = {x ∈ Rn : |x| = R} is the sphere centred at the origin of radius R, then from (2)
we have ∫

RSn−1

f(x)dS = Rn−1

∫
D′
f ◦ Φ(R, θ)(sin θ1)n−2... sin θn−2dθ1...dθn−1,

with D′ = ×(0, π) × ... × (0, π) × (0, 2π). Suppose that f ∈ L1(Rn). Then rewriting the above
integral we obtain ∫

Rn

f(x)dx =

∫ ∞
0

(∫
rSn−1

f(x)dS

)
rn−1dr.

This can be interpreted as integration over a sphere of radius r, and then over all concentric spheres
for 0 < r <∞. �

Let A ∈ O(n) be an orthogonal matrix : AAt = Id and A be the corresponding linear transfor-
mation of Rn, i.e., A(t) = At. It follows from the formula of the change of variables in the integral
that ∫

Sn−1

f(x)dS =

∫
Sn−1

f ◦ A(t)dS =

∫
Sn−1

f(At)dS.

This property is often useful in computations of spherical integrals.


