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7. THE SPACE OF TEST FUNCTIONS

7.1. Space of test functions. Let {2 be an open subset of R™. For an integer £ > 0 we denote by
C’k(Q) the linear space of functions h : 2 — R that have continuous partial derivatives up to order
k on Q. We define C*®(Q) = N,C*(2) to be the space of real functions admitting continuous
partial derivatives of any order. The standard topology on C'*°(2) can be defined by the following
notion of convergence: we say that a sequence {h*} C C™°(Q) converges as k — oo to a function
h in C*®(Q) if h* converges to h uniformly along with all partial derivatives of any order on any
compact subset of ). If K is a compact subset of €2, we use the standard norm

lullorey=Y_ sup [D%u(x)]
o<k zeK

for u € C*(Q).

Recall that supp h, the support of a function h € CO(R"), is defined to be the closure in R” of
the set {x € Q : h(x) # 0}. Denote by C§°(€2) the subspace of C*°(R™) which consists of functions
h such that supp h is a compact subset of €.

Our main goal is to introduce and to study the space of continuous linear functionals on the
linear vector space C§°(f2). For this we first need to choose some topology on C§°(2). For our
purposes it will be sufficient simply to define the notion of convergence of a sequence of elements
in C§°(€2). This will allow us to define the continuity of linear functionals. We say that a sequence
of functions (¢;) of class C§°(§2) converges to ¢ € C§°(§2) if the following conditions hold:

(i) There exists a compact subset K such that K C Q and ¢; = 0 on R"\K for every
Jj =1,2,3.... In other words, supp ¢; C K C { for every j.

(ii) For every a the sequence D%p; converges to D%y uniformly on K. That is all partial
derivatives of ¢; of all orders converge uniformly to the corresponding partial derivatives
of .

Definition 7.1. The space C§°(2) equipped with the above topology of convergence of sequences
will be denoted by D(2). The elements of this space are called test-functions.

We leave as an exercise for the reader to verify that D(Q2) is a topological vector space.

Example 7.1. Denote by |z| = /|z1|2 + ... + |2,|? the Euclidean norm on R”. Set

2
& _
Cee -2 x| <e¢,

we () =
) 0, |z|>e.

Here the constant C. is determined by the condition

/nwa(@dx =1,
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that is,
Cg — Ein / 617‘”2 dt 5
B(0,1)

where B(0,1) denotes the Euclidean unit ball in R™. This is a model example of a function from
D(R™) (the so-called bump function). Observe that

we(z) = e "wi(x/e).

In what follows we write w(x) instead of wi(z). The bump function allows us to construct
suitable test-functions for an arbitrary domain 2 in R™. We denote by Qf := U,cqB(z,¢), the
e-neighbourhood of €.

Lemma 7.2. Given a compact subset  C R™ and ¢ > 0 there exists a function n: R™ — [0,1] of
class C>*(R"™) such that
n(x) =1, for xz e QF,
n(x) =0, for z € R™\Q*.

Proof. Let
1 QQ&
Mz) = T 7 2
0, ze€R™\Q*,
be the characteristic function of Q2. Then the function defined by the convolution integral
n(x) = A Ay)we(z — y)dy
satisfies the required conditions. O

Corollary 7.3. Let Q be a bounded domain and €Y be its subset such that O C Q. Then there
exists a function n € D(Q), n: Q@ — [0,1] such that n(z) = 1 whenever x € .

We point out that the introduced above topology on the space D(£2) is not metrizable. In other
words, one cannot define a distance d on the space of test functions such that the convergence with
respect to d is equivalent to the introduced above convergence of a sequence of test functions. To
see this, recall the following elementary assertion.

Claim. Let {u]'} be a countable family of sequences in a metric space (X,d). Suppose that for
every m = 0,1, ... the sequence {u]'} admits the limit u™ := limy_, u}' and the sequence of these
limits {u™} also tends to uw € X as m — oco. Then for every m there exists ky, such that ky,—1 < kp,
and the sequence {uj! } converges to u.

We leave an easy proof as an exercise. Consider now in D(R) the functions

U () — %e_mgn—w?, for |x| < m,
0, for |z| > m.

For every m we have limy_,o u’ = 0 in D(R), but for any choice of ky, the sequence {uj! } does
not converge in D(R) since the supports of these test functions are not uniformly bounded. This
shows that the topology of D(R™) is not metrizable.

It is not difficult to describe the topology on D(R™) defined by the introduced above convergence.
Consider for simplicity the case n = 1, as the general case is similar. Given m consider m+1 positive
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continuous functions «;. Define a neighbourhood of the origin in D(R) as the set of test-functions ¢
satisfying |¢\) ()| < vi(x), x € R, 7 =1,2,...,m. Then the convergence in this topology precisely
coincides with the introduced above convergence on D(R). The reader is encouraged to supply a
proof of this fact.

7.2. Regularization of functions. The convolution f*g of two functions f,g € L?(R") is defined
by the integral

(1) [xg(x) = . fy)g(z —y)dy = - flz —y)g(y)dy.

The convolution has particularly nice properties when the second factor is a test function. Denote by

L}, .(€) the space of locally Lebesgue-integrable functions on €. Recall that a measurable function

fisin L} () if and only if [ |f(z)|dz < oo for every compact measurable subset X C €. Let
feLl (R") and ¢ € D(R™). Then for every € R™ the function y — ¢(z — ¥) is a test-function

loc
and so the convolution

(2) frplr) = - Fe(x —y)dy
is well-defined point-wise as a usual function on all of R".
Proposition 7.4. We have f * ¢ € C*(R") and

3) D(f x @) = [+ D%.

Proof. (a) Let us show that the convolution f * ¢ is a continuous function. Let 2* € R" be a
sequence converging to z. Then ¢(2* — y) — ¢(z — y), as k — oo everywhere, and

[ plat) = / ol — y)dy —s / FW)ol@ — y)dy = (F * 9)(), as k — oo,

by the Lebesgue Convergence theorem.
(b) Denote by €}, j = 1,...,n, the vectors of the standard basis of R”. For a fixed x € R" we
have

%(90(96 +tej —y) —p(r —y)) — £(¢(m —y)), t =0,

everywhere (this follows from the Mean Value theorem applied to the function ¢(z + t€; — y) on
[0,t]). Therefore, by the Lebesgue Convergence theorem,

%(f*so(fcﬂgj)—fw(w)) = /f(y)i(w(wﬂe*j—y)—sa(af—y))dy — /f(y) <8ijso> (z —y)dy

Hence, the partial derivative of f x ¢ with respect to x; exists and

st o= [ 10 (52) @—ndi=1+(52).

Since %gp € D(R"), it follows from part (a) that the partial derivative %( f * ) is continuous.
Proceeding by induction, we obtain that f * ¢ € C°°(R") and satisfies (3). O

A special case, important in applications, arises if we take the bump-function w. as ¢ in (2).

Definition 7.5. The convolution f. := fxw. is called the reqularization of a function f € L (R").

loc
Proposition 7.6. We have
(i) fe € C=(R");
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(i) if f € C(R™) then f- — f, as € — 0+, in C(Q) for every bounded subset ) of R";
(iii) of f € LP(R™), 1 <p < o0, then f- — f, as ¢ — 0+, in LP(R™).

Proof. Part (i) follows from Proposition 7.4. To show (ii), assume that f is a continuous function
on R™. Then

@) (o) = / we( — y) f(y)dy = / we() f(z — y)dy = / e e )y
n n y|<e

Since

/nws(@dm -1,

we have

/ ) f (e — y)dy - f()

~| [ st - sena| < | ey =t

where

M= sup |f(z—y)— f(2)]
zeQ,|y|<e

Since f is continuous on the compact subset Q¢ of R”, it is uniformly continuous there so that
M. — 0 as € — 0+. This proves (ii).
For the proof of (iii) we need to show that || f: — f ||[zr— 0, as ¢ — 0+, where

1/p
R P Y LG

Lemma 7.7. For every € > 0 we have

I fe llze<|l f llz» -
Proof. Consider first the case p = 1. By Fubini’s theorem

5= [ 1wt < [ (1@ kete - dvas = [ 170) (/w— >dx)dy
— [1rwldy =1 £ 11

Let now p > 1. For p and ¢ satisfying 1y l = 1 we have, by Holder’s inequality,

el < ([ 1@osto ) dy) ([15lrte =9yt y)l/qdy)p
< ([1rwpete—nar) ([ w€<x—y>dy) = [ 15 Pw.ta =)ty

Therefore, by Fubini’s theorem,

(Jirewera)”< ([ ([irwree-va)a)”
= (1 ([t -var)ar)” = ([rrra) .

which proves the lemma. ]
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Now let f € LP(R"), 1 < p < co. From the theory of Lebesgue integral, given 7 > 0 there exists
A > 0 and a function h € C(R™) with supp h C {|z| < A} such that

| f=hle<T

Then by Lemma 7.7 we have

I fe = he le=Il (f = h)e le<I| f = A |r< 7

for every €. Furthermore, supp he C K = {|z| < A+ 1} for € small enough. Hence, by (ii), h. — h
as ¢ — 0+ in C'(K). It follows that

|| h — hs ||Lp§ T
for all € sufficiently small. Thus,
I f=Jelee<Il f =R llze + | b= he [[o + || he = fe |lLr< 37,

which concludes the proof of the proposition. O

7.3. Partition of unity. A family of open subsets (U, )aca in R™ is called a covering of a subset
X C R" if X C UgeaUy. A covering is called locally finite if every point z € X admits a
neighbourhood V' such that the intersection V N U, is not empty only for a finite subset of a in A.
A covering (V3)sep is called a subcovering of (Uy)aca if for every 5 € B there exists a € A such
that V3 C U,. We denote by X° the interior of X.

Proposition 7.8. Let X be an open subset of R™ and (Uy,) be its covering. Then there exists a
locally finite subcovering (V) of (Uy) with the following property: for every B the set Vg contains
the closure of some ball B(pg,rg) and these open balls (B(pg,r3) form a locally finite subcovering

(W'y)'yel‘ of (V,B)'
Proof. We set
Kj={z¢€ X :|z| <j, dist (z,0X) > 1/j}.
Then Kj is a sequence of compact subsets of X satisfying
(i) K; C K7
(i) X = U2, K.

Since K;\K;_, is compact, one can choose U’ , ..., U}, ~a finite subset of (U,) with

(K\K7_y) C UL, U3,

Set V}’ = Uéj N (K;\K;—2)°. Then (V]’) is a locally finite subcovering. For every p € Vj consider a
ball B(p,r(p)) contained in Vp for all § with p € V. Then this family of balls form a subcovering
of (V3) and we apply a previous construction extracting a locally finite subcovering by balls. O

Corollary 7.9. Let X be an open subset of R™ and (Uy) be its covering. Then there exists a locally
finite subcovering (W) and a family of functions n, € Cg°(W,) with the following properties:

(i) ny(x) > 0 for every x € X and every 7.
(i) X2, my(x) =1 for every x € X.

Proof. Consider locally finite subcoverings (W) and (V3) constructed in the previous proposition.
Fix . By construction, there exists a finite number of 3 such that the closed ball W, is contained
in V3. By Corollary 7.3 there exists a function

oy €C( (] Va)

W,CVpg
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with values in [0,1] that is equal to 1 on W,. Hence, ¢(z) = >__ &,(z) is well-defined for every
x € X and ¢(x) > 0. Now set ny(x) = ¢ (z)/o(x). O

The family (7)) is called a partition of unity subordinated to the covering (WS).



