REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

7. The space of test functions

7.1. Space of test functions. Let Ω be an open subset of \mathbb{R}^n . For an integer $k \geq 0$ we denote by $C^k(\Omega)$ the linear space of functions $h: \Omega \longrightarrow \mathbb{R}$ that have continuous partial derivatives up to order k on Ω . We define $C^{\infty}(\Omega) = \bigcap_{k=0}^{\infty} C^k(\Omega)$ to be the space of real functions admitting continuous partial derivatives of any order. The standard topology on $C^{\infty}(\Omega)$ can be defined by the following notion of convergence: we say that a sequence $\{h^k\} \subset C^{\infty}(\Omega)$ converges as $k \longrightarrow \infty$ to a function h in $C^{\infty}(\Omega)$ if h^k converges to h uniformly along with all partial derivatives of any order on any compact subset of Ω . If K is a compact subset of Ω , we use the standard norm

$$\parallel u \parallel_{C^k(K)} = \sum_{|\alpha| \le k} \sup_{x \in K} |D^{\alpha}u(x)|$$

for $u \in C^k(\Omega)$.

Recall that supp h, the support of a function $h \in C^0(\mathbb{R}^n)$, is defined to be the closure in \mathbb{R}^n of the set $\{x \in \Omega : h(x) \neq 0\}$. Denote by $C_0^{\infty}(\Omega)$ the subspace of $C^{\infty}(\mathbb{R}^n)$ which consists of functions h such that supp h is a compact subset of Ω .

Our main goal is to introduce and to study the space of continuous linear functionals on the linear vector space $C_0^{\infty}(\Omega)$. For this we first need to choose some topology on $C_0^{\infty}(\Omega)$. For our purposes it will be sufficient simply to define the notion of convergence of a sequence of elements in $C_0^{\infty}(\Omega)$. This will allow us to define the continuity of linear functionals. We say that a sequence of functions (φ_j) of class $C_0^{\infty}(\Omega)$ converges to $\varphi \in C_0^{\infty}(\Omega)$ if the following conditions hold:

- (i) There exists a compact subset K such that $K \subset \Omega$ and $\varphi_i = 0$ on $\mathbb{R}^n \setminus K$ for every j = 1, 2, 3... In other words, supp $\varphi_j \subset K \subset \Omega$ for every j.
- (ii) For every α the sequence $D^{\alpha}\varphi_{j}$ converges to $D^{\alpha}\varphi$ uniformly on K. That is all partial derivatives of φ_j of all orders converge uniformly to the corresponding partial derivatives of φ .

Definition 7.1. The space $C_0^{\infty}(\Omega)$ equipped with the above topology of convergence of sequences will be denoted by $\mathcal{D}(\Omega)$. The elements of this space are called test-functions.

We leave as an exercise for the reader to verify that $\mathcal{D}(\Omega)$ is a topological vector space.

Example 7.1. Denote by $|x| = \sqrt{|x_1|^2 + \ldots + |x_n|^2}$ the Euclidean norm on \mathbb{R}^n . Set

$$\omega_{\varepsilon}(x) = \begin{cases} C_{\varepsilon} e^{-\frac{\varepsilon^2}{\varepsilon^2 - |x|^2}}, & |x| < \varepsilon, \\ 0, & |x| \ge \varepsilon. \end{cases}$$

Here the constant C_{ε} is determined by the condition

$$\int_{\mathbb{R}^n} \omega_{\varepsilon}(x) dx = 1$$

that is,

$$C_{\varepsilon} = \varepsilon^{-n} \left(\int_{B(0,1)} e^{\frac{-1}{1-|t|^2}} dt \right)^{-1},$$

where B(0,1) denotes the Euclidean unit ball in \mathbb{R}^n . This is a model example of a function from $\mathcal{D}(\mathbb{R}^n)$ (the so-called *bump function*). Observe that

$$\omega_{\varepsilon}(x) = \varepsilon^{-n} \omega_1(x/\varepsilon).$$

 \diamond

In what follows we write $\omega(x)$ instead of $\omega_1(x)$. The bump function allows us to construct suitable test-functions for an arbitrary domain Ω in \mathbb{R}^n . We denote by $\Omega^{\varepsilon} := \bigcup_{x \in \Omega} B(x, \varepsilon)$, the ε -neighbourhood of Ω .

Lemma 7.2. Given a compact subset $\Omega \subset \mathbb{R}^n$ and $\varepsilon > 0$ there exists a function $\eta : \mathbb{R}^n \longrightarrow [0,1]$ of class $C^{\infty}(\mathbb{R}^n)$ such that

$$\eta(x) = 1, \text{ for } x \in \Omega^{\varepsilon}, \eta(x) = 0, \text{ for } x \in \mathbb{R}^n \backslash \Omega^{3\varepsilon}.$$

Proof. Let

$$\lambda(x) = \begin{cases} 1, & x \in \Omega^{2\varepsilon}, \\ 0, & x \in \mathbb{R}^n \backslash \Omega^{2\varepsilon} \end{cases}$$

be the characteristic function of $\Omega^{2\varepsilon}$. Then the function defined by the convolution integral

$$\eta(x) = \int_{\mathbb{R}^n} \lambda(y) \omega_{\varepsilon}(x-y) dy$$

satisfies the required conditions.

Corollary 7.3. Let Ω be a bounded domain and Ω' be its subset such that $\overline{\Omega'} \subset \Omega$. Then there exists a function $\eta \in \mathcal{D}(\Omega), \eta : \Omega \longrightarrow [0,1]$ such that $\eta(x) = 1$ whenever $x \in \Omega'$.

We point out that the introduced above topology on the space $\mathcal{D}(\Omega)$ is not metrizable. In other words, one cannot define a distance d on the space of test functions such that the convergence with respect to d is equivalent to the introduced above convergence of a sequence of test functions. To see this, recall the following elementary assertion.

Claim. Let $\{u_k^m\}$ be a countable family of sequences in a metric space (X, d). Suppose that for every m = 0, 1, ... the sequence $\{u_k^m\}$ admits the limit $u^m := \lim_{k \to \infty} u_k^m$ and the sequence of these limits $\{u^m\}$ also tends to $u \in X$ as $m \to \infty$. Then for every m there exists k_m such that $k_{m-1} < k_m$ and the sequence $\{u_{k_m}^m\}$ converges to u.

We leave an easy proof as an exercise. Consider now in $\mathcal{D}(\mathbb{R})$ the functions

$$u_k^m(x) = \begin{cases} \frac{1}{k} e^{-\frac{m^2}{m^2 - x^2}}, & \text{for } |x| \le m \\ 0, & \text{for } |x| \ge m. \end{cases}$$

For every m we have $\lim_{k\to\infty} u_k^m = 0$ in $\mathcal{D}(\mathbb{R})$, but for any choice of k_m the sequence $\{u_{k_m}^m\}$ does not converge in $\mathcal{D}(\mathbb{R})$ since the supports of these test functions are not uniformly bounded. This shows that the topology of $\mathcal{D}(\mathbb{R}^n)$ is not metrizable.

It is not difficult to describe the topology on $\mathcal{D}(\mathbb{R}^n)$ defined by the introduced above convergence. Consider for simplicity the case n = 1, as the general case is similar. Given m consider m+1 positive

 $\mathbf{2}$

continuous functions γ_j . Define a neighbourhood of the origin in $\mathcal{D}(\mathbb{R})$ as the set of test-functions ϕ satisfying $|\phi^{(j)}(x)| \leq \gamma_j(x), x \in \mathbb{R}, j = 1, 2, ..., m$. Then the convergence in this topology precisely coincides with the introduced above convergence on $\mathcal{D}(\mathbb{R})$. The reader is encouraged to supply a proof of this fact.

7.2. Regularization of functions. The convolution f * g of two functions $f, g \in L^2(\mathbb{R}^n)$ is defined by the integral

(1)
$$f * g(x) = \int_{\mathbb{R}^n} f(y)g(x-y)dy = \int_{\mathbb{R}^n} f(x-y)g(y)dy.$$

The convolution has particularly nice properties when the second factor is a test function. Denote by $L^1_{loc}(\Omega)$ the space of locally Lebesgue-integrable functions on Ω . Recall that a measurable function f is in $L^1_{loc}(\Omega)$ if and only if $\int_X |f(x)| dx < \infty$ for every compact measurable subset $X \subset \Omega$. Let $f \in L^1_{loc}(\mathbb{R}^n)$ and $\varphi \in \mathcal{D}(\mathbb{R}^n)$. Then for every $x \in \mathbb{R}^n$ the function $y \mapsto \varphi(x-y)$ is a test-function and so the convolution

(2)
$$f * \varphi(x) = \int_{\mathbb{R}^n} f(y)\varphi(x-y)dy$$

is well-defined point-wise as a usual function on all of \mathbb{R}^n .

Proposition 7.4. We have
$$f * \varphi \in C^{\infty}(\mathbb{R}^n)$$
 and
(3) $D^{\alpha}(f * \phi) = f * D^{\alpha}\varphi.$

Proof. (a) Let us show that the convolution $f * \varphi$ is a continuous function. Let $x^k \in \mathbb{R}^n$ be a sequence converging to x. Then $\varphi(x^k - y) \longrightarrow \varphi(x - y)$, as $k \to \infty$ everywhere, and

$$f * \varphi(x^k) = \int f(y)\varphi(x^k - y)dy \longrightarrow \int f(y)\varphi(x - y)dy = (f * \varphi)(x), \text{ as } k \to \infty,$$

by the Lebesgue Convergence theorem.

(b) Denote by \vec{e}_j , j = 1, ..., n, the vectors of the standard basis of \mathbb{R}^n . For a fixed $x \in \mathbb{R}^n$ we have

$$\frac{1}{t}(\varphi(x+t\vec{e_j}-y)-\varphi(x-y))\longrightarrow \frac{\partial}{\partial x_j}(\varphi(x-y)), \ t\to 0.$$

everywhere (this follows from the Mean Value theorem applied to the function $\varphi(x + t\vec{e}_j - y)$ on [0,t]). Therefore, by the Lebesgue Convergence theorem,

$$\frac{1}{t}(f*\varphi(x+t\vec{e_j})-f*\varphi(x)) = \int f(y)\frac{1}{t}(\varphi(x+t\vec{e_j}-y)-\varphi(x-y))dy \longrightarrow \int f(y)\left(\frac{\partial}{\partial x_j}\varphi\right)(x-y)dy$$

Hence, the partial derivative of $f * \varphi$ with respect to x_j exists and

$$\frac{\partial}{\partial x_j}f * \varphi = \int f(y) \left(\frac{\partial \varphi}{\partial x_j}\right) (x - y) dy = f * \left(\frac{\partial \varphi}{\partial x_j}\right).$$

Since $\frac{\partial}{\partial x_j}\varphi \in \mathcal{D}(\mathbb{R}^n)$, it follows from part (a) that the partial derivative $\frac{\partial}{\partial x_j}(f * \varphi)$ is continuous. Proceeding by induction, we obtain that $f * \varphi \in C^{\infty}(\mathbb{R}^n)$ and satisfies (3).

A special case, important in applications, arises if we take the bump-function ω_{ε} as φ in (2).

Definition 7.5. The convolution $f_{\varepsilon} := f * \omega_{\varepsilon}$ is called the regularization of a function $f \in L^1_{loc}(\mathbb{R}^n)$.

Proposition 7.6. We have

(i) $f_{\varepsilon} \in C^{\infty}(\mathbb{R}^n);$

- (ii) if $f \in C(\mathbb{R}^n)$ then $f_{\varepsilon} \longrightarrow f$, as $\varepsilon \to 0+$, in $C(\overline{\Omega})$ for every bounded subset Ω of \mathbb{R}^n ; (iii) if $f \in L^p(\mathbb{R}^n)$, $1 \le p < \infty$, then $f_{\varepsilon} \longrightarrow f$, as $\varepsilon \longrightarrow 0+$, in $L^p(\mathbb{R}^n)$.

Proof. Part (i) follows from Proposition 7.4. To show (ii), assume that f is a continuous function on \mathbb{R}^n . Then

(4)
$$f_{\varepsilon}(x) = \int_{\mathbb{R}^n} \omega_{\varepsilon}(x-y) f(y) dy = \int_{\mathbb{R}^n} \omega_{\varepsilon}(y) f(x-y) dy = \int_{|y| \le \varepsilon} \omega_{\varepsilon}(y) f(x-y) dy.$$

Since

$$\int_{\mathbb{R}^n} \omega_{\varepsilon}(x) dx = 1,$$

we have

$$\left|\int_{\mathbb{R}^n}\omega_{\varepsilon}(y)f(x-y)dy - f(x)\right| = \left|\int_{\mathbb{R}^n}\omega_{\varepsilon}(y)(f(x-y) - f(x))dy\right| \le M_{\varepsilon}\int_{|y|\le\varepsilon}\omega_{\varepsilon}(y)dy = M_{\varepsilon},$$

where

$$M_{\varepsilon} = \sup_{x \in \Omega, |y| \le \varepsilon} |f(x - y) - f(x)|.$$

Since f is continuous on the compact subset $\overline{\Omega^{\varepsilon}}$ of \mathbb{R}^n , it is uniformly continuous there so that $M_{\varepsilon} \longrightarrow 0$ as $\varepsilon \to 0+$. This proves (ii). For the proof of (iii) we need to show that $|| f_{\varepsilon} - f ||_{L^p} \longrightarrow 0$, as $\varepsilon \longrightarrow 0+$, where

$$||h||_{L^p} = ||h||_{L^p(\mathbb{R}^n)} = \left(\int_{\mathbb{R}^n} |h(x)|^p dx\right)^{1/p}.$$

Lemma 7.7. For every $\varepsilon > 0$ we have

$$\parallel f_{\varepsilon} \parallel_{L^p} \leq \parallel f \parallel_{L^p}.$$

Proof. Consider first the case p = 1. By Fubini's theorem

$$\| f_{\varepsilon} \|_{L^{1}} = \int |f * \omega_{\varepsilon}(x)| dx \leq \int \int |f(y)| \omega_{\varepsilon}(x-y) dy dx = \int |f(y)| \left(\int \omega_{\varepsilon}(x-y) dx \right) dy$$
$$= \int |f(y)| dy = \| f \|_{L^{1}}.$$

Let now p > 1. For p and q satisfying $\frac{1}{p} + \frac{1}{q} = 1$ we have, by Hölder's inequality,

$$|f * \omega_{\varepsilon}|^{p} \leq \left(\int |f(y)| \omega_{\varepsilon}(x-y) dy \right)^{p} = \left(\int |f(y)| \omega_{\varepsilon}(x-y)^{1/p} \omega_{\varepsilon}(x-y)^{1/q} dy \right)^{p}$$
$$\leq \left(\int |f(y)|^{p} \omega_{\varepsilon}(x-y) dy \right) \left(\int \omega_{\varepsilon}(x-y) dy \right)^{p/q} = \int |f(y)|^{p} \omega_{\varepsilon}(x-y) dy.$$

Therefore, by Fubini's theorem,

$$\left(\int |f * \omega_{\varepsilon}(x)|^{p} dx\right)^{1/p} \leq \left(\int \left(\int |f(y)|^{p} \omega_{\varepsilon}(x-y) dy\right) dx\right)^{1/p}$$
$$= \left(\int |f(y)|^{p} \left(\int \omega_{\varepsilon}(x-y) dx\right) dy\right)^{1/p} = \left(\int |f(y)|^{p} dy\right)^{1/p},$$

which proves the lemma.

Now let $f \in L^p(\mathbb{R}^n)$, $1 \leq p < \infty$. From the theory of Lebesgue integral, given $\tau > 0$ there exists A > 0 and a function $h \in C(\mathbb{R}^n)$ with supp $h \subset \{|x| \leq A\}$ such that

$$\|f-h\|_{L^p} \leq \tau.$$

Then by Lemma 7.7 we have

$$|| f_{\varepsilon} - h_{\varepsilon} ||_{L^{p}} = || (f - h)_{\varepsilon} ||_{L^{p}} \le || f - h ||_{L^{p}} \le \eta$$

for every ε . Furthermore, supp $h_{\varepsilon} \subset K = \{|x| \leq A+1\}$ for ε small enough. Hence, by (ii), $h_{\varepsilon} \longrightarrow h_{\varepsilon}$ as $\varepsilon \longrightarrow 0+$ in C(K). It follows that

$$\|h - h_{\varepsilon}\|_{L^p} \le \tau$$

for all ε sufficiently small. Thus,

$$|| f - f_{\varepsilon} ||_{L^p} \leq || f - h ||_{L^p} + || h - h_{\varepsilon} ||_{L^p} + || h_{\varepsilon} - f_{\varepsilon} ||_{L^p} \leq 3\tau,$$

which concludes the proof of the proposition.

7.3. Partition of unity. A family of open subsets $(U_{\alpha})_{\alpha \in A}$ in \mathbb{R}^n is called a *covering* of a subset $X \subset \mathbb{R}^n$ if $X \subset \bigcup_{\alpha \in A} U_\alpha$. A covering is called *locally finite* if every point $x \in X$ admits a neighbourhood V such that the intersection $V \cap U_{\alpha}$ is not empty only for a finite subset of α in A. A covering $(V_{\beta})_{\beta \in B}$ is called a *subcovering* of $(U_{\alpha})_{\alpha \in A}$ if for every $\beta \in B$ there exists $\alpha \in A$ such that $V_{\beta} \subset U_{\alpha}$. We denote by X° the interior of X.

Proposition 7.8. Let X be an open subset of \mathbb{R}^n and (U_α) be its covering. Then there exists a locally finite subcovering (V_{β}) of (U_{α}) with the following property: for every β the set V_{β} contains the closure of some ball $B(p_{\beta}, r_{\beta})$ and these open balls $(B(p_{\beta}, r_{\beta})$ form a locally finite subcovering $(W_{\gamma})_{\gamma \in \Gamma} of (V_{\beta}).$

Proof. We set

$$K_j = \{ z \in X : |x| \le j, \operatorname{dist}(x, \partial X) \ge 1/j \}.$$

Then K_j is a sequence of compact subsets of X satisfying

(i) $K_j \subset K_{j+1}^{\circ}$ (ii) $X = \bigcup_{j=1}^{\infty} K_j$.

Since $K_i \setminus K_{i-1}^{\circ}$ is compact, one can choose $U_{\alpha_1}^i, ..., U_{\alpha_{k_i}}^i$ a finite subset of (U_{α}) with

$$(K_i \backslash K_{i-1}^{\circ}) \subset \cup_{j=1}^{k_i} U_{\alpha_j}^i.$$

Set $V_i^i = U_{\alpha_i}^i \cap (K_i \setminus K_{i-2})^\circ$. Then (V_i^i) is a locally finite subcovering. For every $p \in V_\beta$ consider a ball B(p, r(p)) contained in V_{β} for all β with $p \in V_{\beta}$. Then this family of balls form a subcovering of (V_{β}) and we apply a previous construction extracting a locally finite subcovering by balls.

Corollary 7.9. Let X be an open subset of \mathbb{R}^n and (U_α) be its covering. Then there exists a locally finite subcovering (W_{γ}) and a family of functions $\eta_{\gamma} \in C_0^{\infty}(W_{\gamma})$ with the following properties:

- (i) $\eta_{\gamma}(x) \ge 0$ for every $x \in X$ and every γ . (ii) $\sum_{\gamma} \eta_{\gamma}(x) = 1$ for every $x \in X$.

Proof. Consider locally finite subcoverings (W_{γ}) and (V_{β}) constructed in the previous proposition. Fix γ . By construction, there exists a finite number of β such that the closed ball $\overline{W_{\gamma}}$ is contained in V_{β} . By Corollary 7.3 there exists a function

$$\phi_{\gamma} \in C_0^{\infty}(\bigcap_{W_{\gamma} \subset V_{\beta}} V_{\beta})$$

with values in [0,1] that is equal to 1 on W_{γ} . Hence, $\phi(x) = \sum_{\gamma} \phi_{\gamma}(x)$ is well-defined for every $x \in X$ and $\phi(x) > 0$. Now set $\eta_{\gamma}(x) = \phi_{\gamma}(x)/\phi(x)$.

The family (η_{γ}) is called *a partition of unity* subordinated to the covering (W_{γ}) .