REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

9. Differentiation of distributions and The structure theorems

We saw in the previous section that the space of distributions is a generalization of the space of functions defined point-wise. A remarkable consequence of this fact is that all distributions admit partial derivatives of any order (suitably defined).
9.1. Definition, basic properties, first examples. We begin with some motivation. Suppose that f is a regular function on a domain Ω in \mathbb{R}^{n}, say, of class $C^{1}(\Omega)$. Then its partial derivative (in the usual sense) $\frac{\partial f}{\partial x_{j}}$ defines a distribution acting on $\varphi \in \mathcal{D}(\Omega)$ by

$$
\left\langle T_{\frac{\partial f}{\partial x_{j}}}, \varphi\right\rangle=\int_{\Omega} \frac{\partial f(x)}{\partial x_{j}} \varphi(x) d x=-\int_{\Omega} f(x) \frac{\partial \varphi(x)}{\partial x_{j}} d x=-\left\langle T_{f}, \frac{\partial \varphi}{\partial x_{j}}\right\rangle
$$

where the second equality follows from the integration by parts formula. But the last expression is defined for an arbitrary distribution f; so it is natural to take it as a definition of the derivative of a distribution. For $f \in \mathcal{D}^{\prime}(\Omega)$ and a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ we set

$$
\left\langle D^{\alpha} f, \varphi\right\rangle:=(-1)^{|\alpha|}\left\langle f, D^{\alpha} \varphi\right\rangle,
$$

where we used the usual notation

$$
D^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x^{\alpha_{1}} \ldots \partial x^{\alpha_{n}}}, \quad|\alpha|=\alpha_{1}+\ldots+\alpha_{n}
$$

Derivatives in $\mathcal{D}^{\prime}(\Omega)$ are often called weak derivatives. It is easy to check (do it!) that weak differentiation is a well-defined operation, that is, $D^{\alpha} f \in \mathcal{D}^{\prime}(\Omega)$. We note some basic properties of this operation:
(0) If $f \in C^{1}(\Omega)$, then $\frac{\partial}{\partial x_{j}} T_{f}=T_{\frac{\partial f}{\partial x_{j}}}$.
(1) The map $D^{\alpha}: \mathcal{D}^{\prime}(\Omega) \longrightarrow \mathcal{D}^{\prime}(\Omega)$ is linear and continuous. The linearity is obvious. In order to prove continuity, consider a sequence $f_{j} \longrightarrow 0$ in $\mathcal{D}^{\prime}(\Omega)$ as $j \rightarrow \infty$. Then for any $\varphi \in \mathcal{D}(\Omega)$,

$$
\left\langle D^{\alpha} f_{j}, \varphi\right\rangle=(-1)^{|\alpha|}\left\langle f_{j}, D^{\alpha} \varphi\right\rangle \longrightarrow 0, \quad \text { as } j \rightarrow \infty
$$

Thus, if a sequence $\left(f_{j}\right)$ converges to f in $\mathcal{D}^{\prime}(\Omega)$, then all partial derivatives of f_{j} converge to the corresponding partial derivatives of f.
(2) Every distribution admits partial derivatives of all orders.
(3) For any multi-indices α and β we have

$$
D^{\alpha+\beta} f=D^{\alpha}\left(D^{\beta} f\right)=D^{\beta}\left(D^{\alpha} f\right)
$$

(4) The Leinbitz rule. If $f \in \mathcal{D}^{\prime}(\Omega)$ and $a \in C^{\infty}(\Omega)$ then

$$
\frac{\partial(a f)}{\partial x_{k}}=a \frac{\partial f}{\partial x_{k}}+\frac{\partial a}{\partial x_{k}} f
$$

Indeed, given $\varphi \in \mathcal{D}(\Omega)$ we have

$$
\begin{aligned}
& \left\langle\frac{\partial(a f)}{\partial x_{k}}, \varphi\right\rangle=-\left\langle a f, \frac{\partial \varphi}{\partial x_{k}}\right\rangle=-\left\langle f, a \frac{\partial \varphi}{\partial x_{k}}\right\rangle=-\left\langle f, \frac{\partial(a \varphi)}{\partial x_{k}}-\frac{\partial a}{\partial x_{k}} \varphi\right\rangle= \\
& -\left\langle f, \frac{\partial(a \varphi)}{\partial x_{k}}\right\rangle+\left\langle f, \frac{\partial a}{\partial x_{k}} \varphi\right\rangle=\left\langle\frac{\partial f}{\partial x_{k}}, a \varphi\right\rangle+\left\langle\frac{\partial a}{\partial x_{k}} f, \varphi\right\rangle \\
& =\left\langle a \frac{\partial f}{\partial x_{k}}, \varphi\right\rangle+\left\langle\frac{\partial a}{\partial x_{k}} f, \varphi\right\rangle=\left\langle\left(a \frac{\partial f}{\partial x_{k}}+\frac{\partial a}{\partial x_{k}} f\right), \varphi\right\rangle .
\end{aligned}
$$

We consider several elementary examples in dimension 1 .
Example 9.1. Consider the so-called Heaviside function

$$
\theta(x)= \begin{cases}1, & \text { if } \quad x>0 \\ 0, & \text { if } \quad x \leq 0\end{cases}
$$

Then,

$$
\left\langle\theta^{\prime}, \phi\right\rangle=-\left\langle\theta, \phi^{\prime}\right\rangle=-\int_{0}^{\infty} \phi^{\prime}(x) d x=\phi(0)=\langle\delta, \phi\rangle .
$$

Thus, $\theta^{\prime}=\delta . \diamond$
Example 9.2. More generally, let f be a function of class C^{1} on $\left(-\infty, x_{0}\right]$ and of class C^{1} on $\left[x_{0}, \infty\right)$. Denote by $[f]_{x_{0}}:=f\left(x_{0}+0\right)-f\left(x_{0}-0\right)$ its "jump" at x_{0}. Denote also by $T_{f^{\prime}}$ the regular distribution defined by the usual derivative f^{\prime} of f. We claim that

$$
f^{\prime}=T_{f^{\prime}}+[f]_{x_{0}} \delta\left(x-x_{0}\right),
$$

where the derivative f^{\prime} of f on the left is understood in the sense of distributions. For any $\varphi \in \mathcal{D}^{\prime}(\mathbb{R})$ we have

$$
\begin{aligned}
& \left\langle f^{\prime}, \varphi\right\rangle=-\left\langle f, \varphi^{\prime}\right\rangle=-\int f(x) \varphi^{\prime}(x) d x=[f]_{x_{0}} \varphi\left(x_{0}\right)+\int f^{\prime}(x) \varphi(x) d x \\
& =\left\langle[f]_{x_{0}} \delta\left(x-x_{0}\right)+T_{f^{\prime}}, \varphi\right\rangle
\end{aligned}
$$

\diamond
Example 9.3. Let $f(x)=\ln |x|$. Then for every $\phi \in \mathcal{D}(\mathbb{R})$ we obtain

$$
\begin{aligned}
& \left.\left.\langle\ln | x\right|^{\prime}, \varphi\right\rangle=-\langle\ln | x\left|, \varphi^{\prime}\right\rangle=-\int_{\mathbb{R}} \ln |x| \varphi^{\prime} d x= \\
& -\lim _{\varepsilon \longrightarrow 0+}\left(\int_{-\infty}^{-\varepsilon} \ln |x| \varphi^{\prime}(x) d x+\int_{\varepsilon}^{+\infty} \ln |x| \varphi^{\prime}(x) d x\right)= \\
& -\lim _{\varepsilon \longrightarrow 0+}\left(\ln \varepsilon \varphi(-\varepsilon)-\int_{-\infty}^{-\varepsilon} \frac{\varphi(x)}{x} d x-\ln \varepsilon \varphi(\varepsilon)-\int_{\varepsilon}^{\infty} \frac{\varphi(x)}{x} d x\right)= \\
& -\lim _{\varepsilon \longrightarrow 0+}\left(\ln \varepsilon[\varphi(-\varepsilon)-\varphi(\varepsilon)]-\int_{|x| \geq \varepsilon} \frac{\varphi(x)}{x} d x\right)= \\
& \lim _{\varepsilon \longrightarrow 0+} \int_{|x| \geq \varepsilon} \frac{\varphi(x)}{x} d x=\left\langle\mathcal{P} \frac{1}{x}, \varphi\right\rangle
\end{aligned}
$$

Thus

$$
\ln |x|^{\prime}=\mathcal{P} \frac{1}{x}
$$

Example 9.4. We have

$$
\left\langle\delta^{\prime}, \phi\right\rangle=-\left\langle\delta, \phi^{\prime}\right\rangle=-\phi^{\prime}(0) .
$$

\diamond
9.2. Basic differential equations with distributions. We saw in the previous examples that the usual point-wise derivative does not give a full information about the derivative in the sense of distributions: the Dirac delta-function appears at the points of discontinuity. The following important statement shows that this does not happen for derivatives in the sense of distributions.

Theorem 9.1. Let $f \in \mathcal{D}^{\prime}((a, b))$ and $f^{\prime}=0$ in $\mathcal{D}^{\prime}((a, b))$. Then f is constant, i.e., there exists a real constant $c \in \mathbb{R}$ such that $f=T_{c}$.

Proof. By hypothesis, for every $\varphi \in \mathcal{D}((a, b))$ one has $\left\langle f, \varphi^{\prime}\right\rangle=0$. Given a function $\psi \in \mathcal{D}((a, b))$, its primitive

$$
\varphi(x)=\int_{-\infty}^{x} \psi(t) d t
$$

is identically constant on the interval $[A, \infty)$, where $A<b$ is the sup of the support of ψ. Hence, φ is in $\mathcal{D}((a, b))$ if and only if

$$
J(\psi):=\int_{-\infty}^{+\infty} \psi(t) d t=0
$$

Now fix a function $\tau_{0} \in \mathcal{D}((a, b))$ such that $J\left(\tau_{0}\right)=1$ and given $\phi \in \mathcal{D}((a, b))$ set $\psi=\phi-J(\phi) \tau_{0}$. Then $J(\psi)=0$ and so $\psi=\varphi^{\prime}$ for some $\varphi \in \mathcal{D}((a, b))$. Therefore, $\langle f, \psi\rangle=0$ and $\langle f, \phi\rangle=$ $\left\langle f, \tau_{0}\right\rangle J(\phi)=\operatorname{const} J(\phi)$ for every $\phi \in \mathcal{D}((a, b))$, which proves the theorem.

Corollary 9.2. Let $f \in \mathcal{D}^{\prime}((a, b))$ and $f^{\prime} \in C((a, b))$. Then f is a regular distribution and $f \in$ $C^{1}((a, b))$.
Proof. The continuous function f^{\prime} admits a primitive \tilde{f} of class $C^{1}((a, b))$. Then $(f-\tilde{f})^{\prime}=0$ in $\mathcal{D}^{\prime}((a, b))$ and Theorem 9.1 can be applied.

We now extend these results to distributions in several variables.
Theorem 9.3. Let Ω^{\prime} be a domain in \mathbb{R}^{n-1} and $I=(a, b)$ be an interval in \mathbb{R}. Assume that a distribution $f \in \mathcal{D}^{\prime}\left(\Omega^{\prime} \times I\right)$ satisfies

$$
\frac{\partial f}{\partial x_{n}}=0
$$

in $\mathcal{D}^{\prime}\left(\Omega^{\prime} \times I\right)$. Then there exists a distribution $\tilde{f} \in \mathcal{D}^{\prime}\left(\Omega^{\prime}\right)$ such that for every $\varphi \in \mathcal{D}\left(\Omega^{\prime} \times I\right)$

$$
\langle f, \varphi\rangle=\int_{\mathbb{R}}\left\langle\tilde{f}\left(x^{\prime}\right), \varphi\left(x^{\prime}, x_{n}\right)\right\rangle d x_{n}
$$

where $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right)$. In this sense the distribution f is independent of the variable x_{n}.
Proof. Fix a function $\tau_{0} \in \mathcal{D}(I)$ such that $\int_{\mathbb{R}} \tau_{0} d t=1$. We lift every $\phi \in \mathcal{D}\left(\Omega^{\prime}\right)$ to a function $\tilde{\phi} \in \mathcal{D}\left(\Omega^{\prime} \times I\right)$ by setting $\tilde{\phi}\left(x^{\prime}, x_{n}\right)=\phi\left(x^{\prime}\right) \tau_{0}\left(x_{n}\right)$. This allows us to define a distribution $\tilde{f} \in \mathcal{D}^{\prime}\left(\Omega^{\prime}\right)$ by setting $\langle\tilde{f}, \phi\rangle=\langle f, \tilde{\phi}\rangle, \phi \in \mathcal{D}\left(\Omega^{\prime}\right)$.

Given $\psi \in \mathcal{D}\left(\Omega^{\prime} \times I\right)$ put

$$
J(\psi)\left(x^{\prime}\right)=\int_{\mathbb{R}} \psi\left(x^{\prime}, x_{n}\right) d x_{n}
$$

Similarly to the proof of Theorem 9.1 for every $\psi \in \mathcal{D}\left(\Omega^{\prime} \times I\right)$ there exists a function $\varphi \in \mathcal{D}\left(\Omega^{\prime} \times I\right)$ such that

$$
\psi(x)-J(\psi)\left(x^{\prime}\right) \tau_{0}\left(x_{n}\right)=\frac{\partial \varphi(x)}{\partial x_{n}}
$$

Then by the assumptions of the theorem, $\left\langle f, \frac{\partial \varphi(x)}{\partial x_{n}}\right\rangle=0$, and by the definition of the distribution \tilde{f} we have

$$
\langle f, \psi\rangle=\left\langle f, J(\psi)\left(x^{\prime}\right) \tau_{0}\left(x_{n}\right)\right\rangle=\langle\tilde{f}, J(\psi)\rangle=\left\langle\tilde{f}, \int_{\mathbb{R}} \psi\left(x^{\prime}, x_{n}\right) d x_{n}\right\rangle
$$

It remains to show that

$$
\left\langle\tilde{f}, \int_{\mathbb{R}} \psi\left(x^{\prime}, x_{n}\right) d x_{n}\right\rangle=\int_{\mathbb{R}}\left\langle\tilde{f}\left(x^{\prime}\right), \psi\left(x^{\prime}, x_{n}\right)\right\rangle d x_{n}
$$

Fix $\psi \in \mathcal{D}\left(\Omega^{\prime} \times I\right)$ and consider the functions $F_{1}\left(x_{n}\right)=\left\langle\tilde{f}\left(x^{\prime}\right), \int_{-\infty}^{x_{n}} \psi\left(x^{\prime}, t\right) d t\right\rangle$ and $F_{2}\left(x_{n}\right)=$ $\int_{-\infty}^{x_{n}}\left\langle\tilde{f}\left(x^{\prime}\right), \psi\left(x^{\prime}, t\right)\right\rangle d t$. Then it follows from Theorem 8.7 that $F_{1}^{\prime}=F_{2}^{\prime}$. Since $\lim _{x_{n} \rightarrow-\infty} F_{j}=0$, we obtain $F_{1} \equiv F_{2}$. This concludes the proof.
Corollary 9.4. Let $f \in \mathcal{D}(\Omega)$ satisfy $\frac{\partial f}{\partial x_{j}}=0, j=1, \ldots, n$. Then f is constant.
Finally we establish a weak, but useful analogue of Corollary 9.2.
Theorem 9.5. Let f and g be continuous functions in a domain $\Omega \subset \mathbb{R}^{n}$. Suppose that

$$
\frac{\partial T_{f}}{\partial x_{n}}=T_{g}
$$

Then the usual partial derivative $\frac{\partial f}{\partial x_{n}}$ exists at every point $x \in \Omega$ and is equal to $g(x)$.
Proof. The statement in local so without loss of generality we assume that $\Omega=\Omega^{\prime} \times I$ in the notation of Theorem 9.3. Fix a point $c \in I$ and set

$$
v(x)=\int_{c}^{x_{n}} g\left(x^{\prime}, t\right) d t
$$

Then $\frac{\partial(f-v)}{\partial x_{n}}=0$ in $\mathcal{D}^{\prime}\left(\Omega^{\prime} \times I\right)$ and Theorem 9.3 gives the existence of a distribution $\tilde{f} \in \mathcal{D}^{\prime}\left(\Omega^{\prime}\right)$ such that $f-v=\tilde{f}$. Furthermore, since $f-v$ is continuous, it follows from the construction of \tilde{f} in the proof of Theorem 9.3 that \tilde{f} is a continuous function in x^{\prime} (defining a regular distribution). Then the function $f(x)=v(x)+\tilde{f}\left(x^{\prime}\right)$ admits a partial derivative in x_{n} which coincides with g. This proves the theorem.
9.3. Support of a distribution. Distributions with compact support. Let $f \in \mathcal{D}^{\prime}\left(\Omega^{\prime}\right)$, and $\Omega \subset \Omega^{\prime}$ be a subdomain. By the restriction of f to Ω we mean a distribution $f \mid \Omega$ acting by

$$
\langle f \mid \Omega, \varphi\rangle:=\langle f, \varphi \mid \Omega\rangle, \varphi \in \mathcal{D}(\Omega) \subset \mathcal{D}\left(\Omega^{\prime}\right)
$$

We say that a distribution $f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ vanishes on an open subset $U \subset \mathbb{R}^{n}$ if $\langle f, \varphi\rangle=0$ for any $\varphi \in \mathcal{D}(U)$, i.e., its restriction to U vanishes identically. We express this as $f \mid U \equiv 0$.
Definition 9.6. The support $\operatorname{supp} f$ of a distribution $f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is the subset of \mathbb{R}^{n} with the following property: $x \in \operatorname{supp} f$ if and only if for every neighbourhood U of x there exists $\phi \in \mathcal{D}(U)$ (and so $\operatorname{supp} \phi \subset U$) such that $\langle f, \phi\rangle \neq 0$, i.e., f does not vanish identically in any neighbourhood of x.

It follows from the definition of $\operatorname{supp} f$ that it is a closed subset of \mathbb{R}^{n}, and so its complement is an open (but not necessarily connected) subset of \mathbb{R}^{n}. Indeed, the set $\mathbb{R}^{n} \backslash \operatorname{supp} f$ is formed by all points x such that f vanishes identically in some neighbourhood of x and so it is clearly open.

Proposition 9.7. Let X be an open subset of \mathbb{R}^{n} such that $f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ vanished identically in a neighbourhood of every point of X. Then $\left.f\right|_{X} \equiv 0$.

Proof. Given point $x \in X$ there exists a neighbourhood U_{α} such that $\left.f\right|_{U_{\alpha}} \equiv 0$. Let $\phi \in \mathcal{D}(X)$. Consider a neighborhood U of $\operatorname{supp} \phi$ such that the closure \bar{U} is a compact subset of X. Let $\left(\eta_{\gamma}\right)$ be a partition of unity subordinated to a finite sub-covering $\left(U_{\alpha}\right)$ of \bar{U} (see Section 7). Then $\langle f, \phi\rangle=\sum_{\gamma}\left\langle f, \eta_{\gamma} \phi\right\rangle=0$ since every $\eta_{\gamma} \phi \in \mathcal{D}\left(U_{\alpha}\right)$ for some α.

Example 9.5. If f is a regular distribution defined by a function $f \in C\left(\mathbb{R}^{n}\right)$ then its support in the sense of distributions coincides with the support in the usual sense since f vanishes on an open set U as a distribution if and only if it vanishes as a usual function. \diamond
Example 9.6. supp $\delta(x)=\{0\} . \diamond$
A remarkable property of distributions with a compact support in \mathbb{R}^{n} is that one can extend them as linear continuous functionals defined on the space $C^{\infty}\left(\mathbb{R}^{n}\right)$. Let $f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ have a compact support supp $f=K$ in \mathbb{R}^{n}. Fix a function $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\eta(x)=1$ in a neighbourhood of K. Then for every $\psi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ the function $\eta \psi$ is in $\mathcal{D}\left(\mathbb{R}^{n}\right)$ and we set

$$
\begin{equation*}
\langle f, \psi\rangle:=\langle f, \eta \psi\rangle, \tag{1}
\end{equation*}
$$

since the right-hand side is well-defined. This definition is independent of the choice of η. Indeed, let $\eta^{\prime} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be another function vanishing in a neighbourhood of K. Then $\eta-\eta^{\prime}$ vanishes in a neighbourhood of K and for any $\psi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ the support of the function $\left(\eta-\eta^{\prime}\right) \psi \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ is contained in $\mathbb{R}^{n} \backslash K$. By Definition 9.6 we have

$$
\langle f, \eta \psi\rangle-\left\langle f, \eta^{\prime} \psi\right\rangle=\left\langle f,\left(\eta-\eta^{\prime}\right) \psi\right\rangle=0 .
$$

Hence, (1) is independent of the choice of η. The defined above extension of f (still denoted by f) is, of course, a linear continuous functional on $C^{\infty}\left(\mathbb{R}^{n}\right)$. Indeed, let a sequence ψ^{k} converge to ψ in $C^{\infty}\left(\mathbb{R}^{n}\right)$, i.e., ψ^{k} converges to ψ together with all derivatives uniformly on every compact subset of \mathbb{R}^{n}. Then $\eta \psi^{k}$ converges to $\eta \psi$ in $\mathcal{D}\left(\mathbb{R}^{n}\right)$ and

$$
\left\langle f, \psi^{k}\right\rangle=\left\langle f, \eta \psi^{k}\right\rangle \longrightarrow\langle f, \eta \psi\rangle=\langle f, \psi\rangle .
$$

Example 9.7. For every $\psi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ we have

$$
\langle\delta(x), \psi\rangle=\langle\delta(x), \eta \psi\rangle=\eta(0) \psi(0)=\psi(0)
$$

since $\eta=1$ in a neighbourhood of $\operatorname{supp} \delta(x)=\{0\} . \diamond$

