REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

9. Differentiation of distributions and the structure theorems

We saw in the previous section that the space of distributions is a generalization of the space of functions defined point-wise. A remarkable consequence of this fact is that all distributions admit partial derivatives of any order (suitably defined).

9.1. Definition, basic properties, first examples. We begin with some motivation. Suppose that f is a regular function on a domain Ω in \mathbb{R}^n , say, of class $C^1(\Omega)$. Then its partial derivative (in the usual sense) $\frac{\partial f}{\partial x_i}$ defines a distribution acting on $\varphi \in \mathcal{D}(\Omega)$ by

$$\langle T_{\frac{\partial f}{\partial x_j}},\varphi\rangle = \int_\Omega \frac{\partial f(x)}{\partial x_j}\varphi(x)dx = -\int_\Omega f(x)\frac{\partial\varphi(x)}{\partial x_j}dx = -\langle T_f,\frac{\partial\varphi}{\partial x_j}\rangle,$$

where the second equality follows from the integration by parts formula. But the last expression is defined for an arbitrary distribution f; so it is natural to take it as a definition of the derivative of a distribution. For $f \in \mathcal{D}'(\Omega)$ and a multi-index $\alpha = (\alpha_1, ..., \alpha_n)$ we set

$$\langle D^{\alpha}f,\varphi\rangle := (-1)^{|\alpha|} \langle f, D^{\alpha}\varphi\rangle,$$

where we used the usual notation

$$D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x^{\alpha_1} \dots \partial x^{\alpha_n}}, \quad |\alpha| = \alpha_1 + \dots + \alpha_n.$$

Derivatives in $\mathcal{D}'(\Omega)$ are often called *weak* derivatives. It is easy to check (do it!) that weak differentiation is a well-defined operation, that is, $D^{\alpha}f \in \mathcal{D}'(\Omega)$. We note some basic properties of this operation:

- (0) If $f \in C^1(\Omega)$, then $\frac{\partial}{\partial x_j}T_f = T_{\frac{\partial f}{\partial x_j}}$.
- (1) The map $D^{\alpha} : \mathcal{D}'(\Omega) \longrightarrow \mathcal{D}'(\dot{\Omega})$ is linear and continuous. The linearity is obvious. In order to prove continuity, consider a sequence $f_j \longrightarrow 0$ in $\mathcal{D}'(\Omega)$ as $j \to \infty$. Then for any $\varphi \in \mathcal{D}(\Omega)$,

$$\langle D^{\alpha} f_j, \varphi \rangle = (-1)^{|\alpha|} \langle f_j, D^{\alpha} \varphi \rangle \longrightarrow 0, \text{ as } j \to \infty.$$

Thus, if a sequence (f_j) converges to f in $\mathcal{D}'(\Omega)$, then all partial derivatives of f_j converge to the corresponding partial derivatives of f.

- (2) Every distribution admits partial derivatives of all orders.
- (3) For any multi-indices α and β we have

$$D^{\alpha+\beta}f = D^{\alpha}(D^{\beta}f) = D^{\beta}(D^{\alpha}f).$$

(4) The Leinbitz rule. If $f \in \mathcal{D}'(\Omega)$ and $a \in C^{\infty}(\Omega)$ then

$$\frac{\partial(af)}{\partial x_k} = a \frac{\partial f}{\partial x_k} + \frac{\partial a}{\partial x_k} f.$$

Indeed, given $\varphi \in \mathcal{D}(\Omega)$ we have

$$\begin{split} &\langle \frac{\partial(af)}{\partial x_k}, \varphi \rangle = -\langle af, \frac{\partial \varphi}{\partial x_k} \rangle = -\langle f, a \frac{\partial \varphi}{\partial x_k} \rangle = -\langle f, \frac{\partial(a\varphi)}{\partial x_k} - \frac{\partial a}{\partial x_k} \varphi \rangle = \\ &-\langle f, \frac{\partial(a\varphi)}{\partial x_k} \rangle + \langle f, \frac{\partial a}{\partial x_k} \varphi \rangle = \langle \frac{\partial f}{\partial x_k}, a\varphi \rangle + \langle \frac{\partial a}{\partial x_k} f, \varphi \rangle \\ &= \langle a \frac{\partial f}{\partial x_k}, \varphi \rangle + \langle \frac{\partial a}{\partial x_k} f, \varphi \rangle = \langle \left(a \frac{\partial f}{\partial x_k} + \frac{\partial a}{\partial x_k} f \right), \varphi \rangle. \end{split}$$

We consider several elementary examples in dimension 1.

Example 9.1. Consider the so-called *Heaviside* function

$$\theta(x) = \begin{cases} 1, & \text{if } x > 0, \\ 0, & \text{if } x \le 0. \end{cases}$$

Then,

$$\langle \theta', \phi \rangle = -\langle \theta, \phi' \rangle = -\int_0^\infty \phi'(x) dx = \phi(0) = \langle \delta, \phi \rangle.$$

Thus, $\theta' = \delta$. \diamond

Example 9.2. More generally, let f be a function of class C^1 on $(-\infty, x_0]$ and of class C^1 on $[x_0, \infty)$. Denote by $[f]_{x_0} := f(x_0 + 0) - f(x_0 - 0)$ its "jump" at x_0 . Denote also by $T_{f'}$ the regular distribution defined by the usual derivative f' of f. We claim that

$$f' = T_{f'} + [f]_{x_0} \delta(x - x_0),$$

where the derivative f' of f on the left is understood in the sense of distributions. For any $\varphi \in \mathcal{D}'(\mathbb{R})$ we have

$$\langle f', \varphi \rangle = -\langle f, \varphi' \rangle = -\int f(x)\varphi'(x)dx = [f]_{x_0}\varphi(x_0) + \int f'(x)\varphi(x)dx$$

= $\langle [f]_{x_0}\delta(x - x_0) + T_{f'}, \varphi \rangle.$

 \diamond

Example 9.3. Let $f(x) = \ln |x|$. Then for every $\phi \in \mathcal{D}(\mathbb{R})$ we obtain

$$\begin{split} &\langle \ln |x|', \varphi \rangle = -\langle \ln |x|, \varphi' \rangle = -\int_{\mathbb{R}} \ln |x| \varphi' dx = \\ &- \lim_{\varepsilon \longrightarrow 0+} \left(\int_{-\infty}^{-\varepsilon} \ln |x| \varphi'(x) dx + \int_{\varepsilon}^{+\infty} \ln |x| \varphi'(x) dx \right) = \\ &- \lim_{\varepsilon \longrightarrow 0+} \left(\ln \varepsilon \varphi(-\varepsilon) - \int_{-\infty}^{-\varepsilon} \frac{\varphi(x)}{x} dx - \ln \varepsilon \varphi(\varepsilon) - \int_{\varepsilon}^{\infty} \frac{\varphi(x)}{x} dx \right) = \\ &- \lim_{\varepsilon \longrightarrow 0+} \left(\ln \varepsilon [\varphi(-\varepsilon) - \varphi(\varepsilon)] - \int_{|x| \ge \varepsilon} \frac{\varphi(x)}{x} dx \right) = \\ &\lim_{\varepsilon \longrightarrow 0+} \int_{|x| \ge \varepsilon} \frac{\varphi(x)}{x} dx = \langle \mathcal{P} \frac{1}{x}, \varphi \rangle \end{split}$$

Thus

$$\ln|x|' = \mathcal{P}\frac{1}{x}.$$

 $\mathbf{2}$

 \diamond

Example 9.4. We have

$$\langle \delta', \phi \rangle = -\langle \delta, \phi' \rangle = -\phi'(0)$$

 \diamond

9.2. Basic differential equations with distributions. We saw in the previous examples that the usual point-wise derivative does not give a full information about the derivative in the sense of distributions: the Dirac delta-function appears at the points of discontinuity. The following important statement shows that this does not happen for derivatives in the sense of distributions.

Theorem 9.1. Let $f \in \mathcal{D}'((a,b))$ and f' = 0 in $\mathcal{D}'((a,b))$. Then f is constant, i.e., there exists a real constant $c \in \mathbb{R}$ such that $f = T_c$.

Proof. By hypothesis, for every $\varphi \in \mathcal{D}((a, b))$ one has $\langle f, \varphi' \rangle = 0$. Given a function $\psi \in \mathcal{D}((a, b))$, its primitive

$$\varphi(x) = \int_{-\infty}^{x} \psi(t) dt$$

is identically constant on the interval $[A, \infty)$, where A < b is the sup of the support of ψ . Hence, φ is in $\mathcal{D}((a, b))$ if and only if

$$J(\psi) := \int_{-\infty}^{+\infty} \psi(t) dt = 0.$$

Now fix a function $\tau_0 \in \mathcal{D}((a, b))$ such that $J(\tau_0) = 1$ and given $\phi \in \mathcal{D}((a, b))$ set $\psi = \phi - J(\phi)\tau_0$. Then $J(\psi) = 0$ and so $\psi = \varphi'$ for some $\varphi \in \mathcal{D}((a, b))$. Therefore, $\langle f, \psi \rangle = 0$ and $\langle f, \phi \rangle = \langle f, \tau_0 \rangle J(\phi) = const J(\phi)$ for every $\phi \in \mathcal{D}((a, b))$, which proves the theorem.

Corollary 9.2. Let $f \in \mathcal{D}'((a,b))$ and $f' \in C((a,b))$. Then f is a regular distribution and $f \in C^1((a,b))$.

Proof. The continuous function f' admits a primitive \tilde{f} of class $C^1((a,b))$. Then $(f - \tilde{f})' = 0$ in $\mathcal{D}'((a,b))$ and Theorem 9.1 can be applied.

We now extend these results to distributions in several variables.

Theorem 9.3. Let Ω' be a domain in \mathbb{R}^{n-1} and I = (a, b) be an interval in \mathbb{R} . Assume that a distribution $f \in \mathcal{D}'(\Omega' \times I)$ satisfies

$$\frac{\partial f}{\partial x_n} = 0$$

in $\mathcal{D}'(\Omega' \times I)$. Then there exists a distribution $\tilde{f} \in \mathcal{D}'(\Omega')$ such that for every $\varphi \in \mathcal{D}(\Omega' \times I)$

$$\langle f, \varphi \rangle = \int_{\mathbb{R}} \langle \tilde{f}(x'), \varphi(x', x_n) \rangle dx_n$$

where $x' = (x_1, \ldots, x_{n-1})$. In this sense the distribution f is independent of the variable x_n .

Proof. Fix a function $\tau_0 \in \mathcal{D}(I)$ such that $\int_{\mathbb{R}} \tau_0 dt = 1$. We lift every $\phi \in \mathcal{D}(\Omega')$ to a function $\tilde{\phi} \in \mathcal{D}(\Omega' \times I)$ by setting $\tilde{\phi}(x', x_n) = \phi(x')\tau_0(x_n)$. This allows us to define a distribution $\tilde{f} \in \mathcal{D}'(\Omega')$ by setting $\langle \tilde{f}, \phi \rangle = \langle f, \tilde{\phi} \rangle, \phi \in \mathcal{D}(\Omega')$.

Given $\psi \in \mathcal{D}(\Omega' \times I)$ put

$$J(\psi)(x') = \int_{\mathbb{R}} \psi(x', x_n) dx_n.$$

RASUL SHAFIKOV

Similarly to the proof of Theorem 9.1 for every $\psi \in \mathcal{D}(\Omega' \times I)$ there exists a function $\varphi \in \mathcal{D}(\Omega' \times I)$ such that

$$\psi(x) - J(\psi)(x')\tau_0(x_n) = \frac{\partial\varphi(x)}{\partial x_n}.$$

Then by the assumptions of the theorem, $\langle f, \frac{\partial \varphi(x)}{\partial x_n} \rangle = 0$, and by the definition of the distribution \tilde{f} we have

$$\langle f, \psi \rangle = \langle f, J(\psi)(x')\tau_0(x_n) \rangle = \langle \tilde{f}, J(\psi) \rangle = \langle \tilde{f}, \int_{\mathbb{R}} \psi(x', x_n) dx_n \rangle.$$

It remains to show that

$$\langle \tilde{f}, \int_{\mathbb{R}} \psi(x', x_n) dx_n \rangle = \int_{\mathbb{R}} \langle \tilde{f}(x'), \psi(x', x_n) \rangle dx_n$$

Fix $\psi \in \mathcal{D}(\Omega' \times I)$ and consider the functions $F_1(x_n) = \langle \tilde{f}(x'), \int_{-\infty}^{x_n} \psi(x',t) dt \rangle$ and $F_2(x_n) = \int_{-\infty}^{x_n} \langle \tilde{f}(x'), \psi(x',t) \rangle dt$. Then it follows from Theorem 8.7 that $F'_1 = F'_2$. Since $\lim_{x_n \to -\infty} F_j = 0$, we obtain $F_1 \equiv F_2$. This concludes the proof.

Corollary 9.4. Let $f \in \mathcal{D}(\Omega)$ satisfy $\frac{\partial f}{\partial x_j} = 0$, j = 1, ..., n. Then f is constant.

Finally we establish a weak, but useful analogue of Corollary 9.2.

Theorem 9.5. Let f and g be continuous functions in a domain $\Omega \subset \mathbb{R}^n$. Suppose that

$$\frac{\partial T_f}{\partial x_n} = T_g$$

Then the usual partial derivative $\frac{\partial f}{\partial x_n}$ exists at every point $x \in \Omega$ and is equal to g(x).

Proof. The statement in local so without loss of generality we assume that $\Omega = \Omega' \times I$ in the notation of Theorem 9.3. Fix a point $c \in I$ and set

$$v(x) = \int_{c}^{x_n} g(x', t) dt$$

Then $\frac{\partial(f-v)}{\partial x_n} = 0$ in $\mathcal{D}'(\Omega' \times I)$ and Theorem 9.3 gives the existence of a distribution $\tilde{f} \in \mathcal{D}'(\Omega')$ such that $f - v = \tilde{f}$. Furthermore, since f - v is continuous, it follows from the construction of \tilde{f} in the proof of Theorem 9.3 that \tilde{f} is a continuous function in x' (defining a regular distribution). Then the function $f(x) = v(x) + \tilde{f}(x')$ admits a partial derivative in x_n which coincides with g. This proves the theorem.

9.3. Support of a distribution. Distributions with compact support. Let $f \in \mathcal{D}'(\Omega')$, and $\Omega \subset \Omega'$ be a subdomain. By the restriction of f to Ω we mean a distribution $f|\Omega$ acting by

$$\langle f|\Omega,\varphi\rangle := \langle f,\varphi|\Omega\rangle, \ \varphi \in \mathcal{D}(\Omega) \subset \mathcal{D}(\Omega').$$

We say that a distribution $f \in \mathcal{D}'(\mathbb{R}^n)$ vanishes on an open subset $U \subset \mathbb{R}^n$ if $\langle f, \varphi \rangle = 0$ for any $\varphi \in \mathcal{D}(U)$, i.e., its restriction to U vanishes identically. We express this as $f|U \equiv 0$.

Definition 9.6. The support supp f of a distribution $f \in \mathcal{D}'(\mathbb{R}^n)$ is the subset of \mathbb{R}^n with the following property: $x \in \text{supp } f$ if and only if for every neighbourhood U of x there exists $\phi \in \mathcal{D}(U)$ (and so $\text{supp } \phi \subset U$) such that $\langle f, \phi \rangle \neq 0$, i.e., f does not vanish identically in any neighbourhood of x.

It follows from the definition of supp f that it is a closed subset of \mathbb{R}^n , and so its complement is an open (but not necessarily connected) subset of \mathbb{R}^n . Indeed, the set $\mathbb{R}^n \setminus \text{supp } f$ is formed by all points x such that f vanishes identically in some neighbourhood of x and so it is clearly open.

4

Proposition 9.7. Let X be an open subset of \mathbb{R}^n such that $f \in \mathcal{D}'(\mathbb{R}^n)$ vanished identically in a neighbourhood of every point of X. Then $f|_X \equiv 0$.

Proof. Given point $x \in X$ there exists a neighbourhood U_{α} such that $f|_{U_{\alpha}} \equiv 0$. Let $\phi \in \mathcal{D}(X)$. Consider a neighborhood U of supp ϕ such that the closure \overline{U} is a compact subset of X. Let (η_{γ}) be a partition of unity subordinated to a finite sub-covering (U_{α}) of \overline{U} (see Section 7). Then $\langle f, \phi \rangle = \sum_{\gamma} \langle f, \eta_{\gamma} \phi \rangle = 0$ since every $\eta_{\gamma} \phi \in \mathcal{D}(U_{\alpha})$ for some α .

Example 9.5. If f is a regular distribution defined by a function $f \in C(\mathbb{R}^n)$ then its support in the sense of distributions coincides with the support in the usual sense since f vanishes on an open set U as a distribution if and only if it vanishes as a usual function. \diamond

Example 9.6. supp $\delta(x) = \{0\}$. \diamond

A remarkable property of distributions with a compact support in \mathbb{R}^n is that one can extend them as linear continuous functionals defined on the space $C^{\infty}(\mathbb{R}^n)$. Let $f \in \mathcal{D}'(\mathbb{R}^n)$ have a compact support supp f = K in \mathbb{R}^n . Fix a function $\eta \in C_0^{\infty}(\mathbb{R}^n)$ such that $\eta(x) = 1$ in a neighbourhood of K. Then for every $\psi \in C^{\infty}(\mathbb{R}^n)$ the function $\eta \psi$ is in $\mathcal{D}(\mathbb{R}^n)$ and we set

(1)
$$\langle f, \psi \rangle := \langle f, \eta \psi \rangle_{\mathcal{H}}$$

since the right-hand side is well-defined. This definition is independent of the choice of η . Indeed, let $\eta' \in C_0^{\infty}(\mathbb{R}^n)$ be another function vanishing in a neighbourhood of K. Then $\eta - \eta'$ vanishes in a neighbourhood of K and for any $\psi \in C^{\infty}(\mathbb{R}^n)$ the support of the function $(\eta - \eta')\psi \in \mathcal{D}(\mathbb{R}^n)$ is contained in $\mathbb{R}^n \setminus K$. By Definition 9.6 we have

$$\langle f, \eta \psi \rangle - \langle f, \eta' \psi \rangle = \langle f, (\eta - \eta') \psi \rangle = 0.$$

Hence, (1) is independent of the choice of η . The defined above extension of f (still denoted by f) is, of course, a linear continuous functional on $C^{\infty}(\mathbb{R}^n)$. Indeed, let a sequence ψ^k converge to ψ in $C^{\infty}(\mathbb{R}^n)$, i.e., ψ^k converges to ψ together with all derivatives uniformly on every compact subset of \mathbb{R}^n . Then $\eta\psi^k$ converges to $\eta\psi$ in $\mathcal{D}(\mathbb{R}^n)$ and

$$\langle f, \psi^k \rangle = \langle f, \eta \psi^k \rangle \longrightarrow \langle f, \eta \psi \rangle = \langle f, \psi \rangle.$$

Example 9.7. For every $\psi \in C^{\infty}(\mathbb{R}^n)$ we have

$$\langle \delta(x), \psi \rangle = \langle \delta(x), \eta \psi \rangle = \eta(0)\psi(0) = \psi(0)$$

since $\eta = 1$ in a neighbourhood of supp $\delta(x) = \{0\}$.