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REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

9. DIFFERENTIATION OF DISTRIBUTIONS AND THE STRUCTURE THEOREMS

We saw in the previous section that the space of distributions is a generalization of the space of
functions defined point-wise. A remarkable consequence of this fact is that all distributions admit
partial derivatives of any order (suitably defined).

9.1. Definition, basic properties, first examples. We begin with some motivation. Suppose
that f is a regular function on a domain Q in R™, say, of class C1(£2). Then its partial derivative

(in the usual sense) 8‘% defines a distribution acting on ¢ € D(2) by

of(x) Oy
Tor ) = d = — (T},
< aanj #) = /Q 8.%'] /f 81'3 v =Ty 8:103)
where the second equality follows from the integration by parts formula. But the last expression is

defined for an arbitrary distribution f; so it is natural to take it as a definition of the derivative of
a distribution. For f € D/(Q) and a multi-index a = (ay, ..., o) we set

(D f, ) == (—1)l*l(f, DY),

where we used the usual notation

N Hlel

Derivatives in D’'(Q2) are often called weak derivatives. It is easy to check (do it!) that weak
differentiation is a well-defined operation, that is, D®f € D’'(2). We note some basic properties of
this operation:

(0) If f € C*(Q), then %Tf =Tos.

(1) The map D* : D'(Q) — D’ (5]2) is linear and continuous. The linearity is obvious. In

order to prove continuity, consider a sequence f; — 0 in D'(€2) as j — co. Then for any
¢ € D(),

<Dafj)go> = (_1)|a‘<f]7Da<p> — 07 as ] — OQ.
Thus, if a sequence (f;) converges to f in D' (), then all partial derivatives of f; converge
to the corresponding partial derivatives of f.

(2) Every distribution admits partial derivatives of all orders.
(3) For any multi-indices a and 8 we have

D f = D¥(DPf) = DY(D*f).
(4) The Leinbitz rule. If f € D'(Q) and a € COO(Q) then
olaf) _ OF |

8xk axk 8$k
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Indeed, given ¢ € D(2) we have

daf) . dp dp . dlap) da |

< s ,90> ——<af,07$k> __<f’a87xk> __<fa or _6751.3@ =
B B B, 0

12 (7, 200 = 2+ (2 )

0 0 0
gL o+ ot = (ol + 1) )

We consider several elementary examples in dimension 1.
Example 9.1. Consider the so-called Heaviside function
O Pl
Then, -
.0) = ~(0.0) = = |~ d@hde = 0(0) = (5.0)
Thus, 0’ = 6. ¢

Example 9.2. More generally, let f be a function of class C! on (—oco, o] and of class C! on
[0, 00). Denote by [f]z, := f(xo+0) — f(zo — 0) its “jump” at xo. Denote also by Ty the regular
distribution defined by the usual derivative f’ of f. We claim that

f/ = Tf’ + [f]xo(S(fL’ - 'IO),
where the derivative f’ of f on the left is understood in the sense of distributions. For any ¢ € D'(R)
we have

(o) = / F@)¢ @)ds = [Fayplan) + [ £'@)ola)do

= ([flaod( — x0) + Tyr,
o

Example 9.3. Let f(z) = In|z|. Then for every ¢ € D(R) we obtain

(I J2l', ) = —(In |z], ) = /R In |2]¢'dz =

)=
— lim ( In ||/ ( )dx+/€+ooln\x|gol(x)dx):
(

e—0+
—5 o
. p(x) p(x)
-1 1 ——dr —1 - de | =
Jim nep(— OO L nep(e) /6 s
— lim lna[cp(—s)—np(e)]—/ go(x)dx =
e—0+ lz|>e T
1
lim #(x) dz = (P—, )
e—0+ lz|>e T x

Thus 1
In|z| = P-.
T
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Example 9.4. We have
<5/7¢> = _<57 ¢/> = _¢/(O)

&

9.2. Basic differential equations with distributions. We saw in the previous examples that
the usual point-wise derivative does not give a full information about the derivative in the sense
of distributions: the Dirac delta-function appears at the points of discontinuity. The following
important statement shows that this does not happen for derivatives in the sense of distributions.

Theorem 9.1. Let f € D'((a,b)) and f' =0 in D'((a,b)). Then f is constant, i.e., there exists a
real constant ¢ € R such that f ="T¢.

Proof. By hypothesis, for every ¢ € D((a,b)) one has (f,¢’) = 0. Given a function ¢ € D((a,b)),
its primitive

o) = [ "yt

is identically constant on the interval [A, c0), where A < b is the sup of the support of ). Hence,
¢ is in D((a, b)) if and only if
+oo

J() = B(t)dt = 0.

Now fix a function 79 € D((a, b)) such that J(79) = 1 and given ¢ € D((a,b)) set ¢ = ¢ — J(¢)70.
Then J(1) = 0 and so ¢ = ¢’ for some ¢ € D((a,b)). Therefore, (f,¢) = 0 and (f,¢p) =
(f,10)J (@) = constJ(¢) for every ¢ € D((a,b)), which proves the theorem. O

Corollary 9.2. Let f € D'((a,b)) and f" € C((a,b)). Then f is a regular distribution and f €
C'((a,b))-

Proof. The continuous function f’ admits a primitive f of class C'((a,b)). Then (f — f) = 0 in
D'((a,b)) and Theorem 9.1 can be applied. O

We now extend these results to distributions in several variables.

Theorem 9.3. Let ) be a domain in R*™! and I = (a,b) be an interval in R. Assume that a
distribution f € D'(Y x I) satisfies
of

s

in D' (Y x I). Then there exists a distribution f € D'(Q) such that for every ¢ € D(Q x I)

(fro) = /R (), (! 0)) i,

where ' = (x1,...,Zn—1). In this sense the distribution f is independent of the variable x,.

0

Proof. Fix a function 79 € D(I) such that [, odt = 1. We lift every ¢ € D(€) to a function
e DY xI) by setting d(x', ) = ¢(a')70(2,). This allows us to define a distribution f € D’/(€)

by setting (f,¢) = (f,4), ¢ € D().
Given 1) € D(Q' x I) put

J(lﬁ)(m’)z/ﬂ{zﬁ(m’,xn)dwn.
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Similarly to the proof of Theorem 9.1 for every ¢ € D(Q x I) there exists a function ¢ € D(Q' x I)
such that
dp(z)

v(@) = )l =

Then by the assumptions of the theorem, (f, 85;(:)> = 0, and by the definition of the distribution f
we have

(fs0) = (£, J@) (@m0 (zn)) = (f, J(¥)) = <f,/R¢(x',9«"n)d$n>-

It remains to show that

(. /R B! ) diry) = /R (F(a'), 9(a, )y den.

Fix ¢ € D(Q x I) and consider the functions Fj(z,) = (f(a:’),ffgo (@ t)dt) and Fy(x,) =
ff&(f(:c’), Y(a,t))dt. Then it follows from Theorem 8.7 that F| = Fj. Since lim,, o Fj

= O,
we obtain F; = F5. This concludes the proof. O
Corollary 9.4. Let f € D(Q) satisfy gTj =0,j=1,...n. Then f is constant.
Finally we establish a weak, but useful analogue of Corollary 9.2.

Theorem 9.5. Let f and g be continuous functions in a domain £ C R™. Suppose that
oTy
Oz,

Then the usual partial derivative % exists at every point x € Q and is equal to g(x).

Proof. The statement in local so without loss of generality we assume that Q = Q' x I in the
notation of Theorem 9.3. Fix a point ¢ € I and set

() = / " bt

Then a(afT;v) =0 in D'( x I) and Theorem 9.3 gives the existence of a distribution f € D’'(€)
such that f —v = f . Furthermore, since f — v is continuous, it follows from the construction of f
in the proof of Theorem 9.3 that f is a continuous function in 2’ (defining a regular distribution).

Then the function f(z) = v(z) + f(2') admits a partial derivative in x, which coincides with g.
This proves the theorem. O

9.3. Support of a distribution. Distributions with compact support. Let f € D'(Q), and
Q C ' be a subdomain. By the restriction of f to  we mean a distribution f|Q acting by

(1 0) = (f,¢1), v € D(Q) C D).
We say that a distribution f € D'(R™) vanishes on an open subset U C R" if (f,p) = 0 for any
¢ € D(U), i.e., its restriction to U vanishes identically. We express this as f|U = 0.

Definition 9.6. The support supp f of a distribution f € D'(R™) is the subset of R™ with the
following property: x € supp f if and only if for every neighbourhood U of x there exists ¢ € D(U)
(and so supp ¢ C U) such that (f,$) # 0, i.e., f does not vanish identically in any neighbourhood

of x.
It follows from the definition of supp f that it is a closed subset of R”, and so its complement is

an open (but not necessarily connected) subset of R™. Indeed, the set R™\supp f is formed by all
points x such that f vanishes identically in some neighbourhood of x and so it is clearly open.
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Proposition 9.7. Let X be an open subset of R"™ such that f € D'(R™) vanished identically in a
neighbourhood of every point of X. Then f|x = 0.

Proof. Given point z € X there exists a neighbourhood U, such that f|y, = 0. Let ¢ € D(X).
Consider a neighborhood U of supp ¢ such that the closure U is a compact subset of X. Let
(1) be a partition of unity subordinated to a finite sub-covering (U,) of U (see Section 7). Then

(f,0) = Z»y<f, ny¢) = 0 since every 1,¢ € D(U,) for some «. 0

Example 9.5. If f is a regular distribution defined by a function f € C(R™) then its support in
the sense of distributions coincides with the support in the usual sense since f vanishes on an open
set U as a distribution if and only if it vanishes as a usual function. ©

Example 9.6. suppd(z) = {0}. ¢

A remarkable property of distributions with a compact support in R™ is that one can extend them
as linear continuous functionals defined on the space C*°(R"™). Let f € D/(R™) have a compact
support supp f = K in R”. Fix a function n € C§°(R") such that n(z) = 1 in a neighbourhood of
K. Then for every ¢» € C°°(R™) the function 71 is in D(R™) and we set

(1) () = (),

since the right-hand side is well-defined. This definition is independent of the choice of 1. Indeed,
let " € C§°(R™) be another function vanishing in a neighbourhood of K. Then n — ' vanishes in
a neighbourhood of K and for any ¢ € C°°(R") the support of the function (n —n')¢ € D(R") is
contained in R™\ K. By Definition 9.6 we have

(fymd) = (f,n'¥) = (f, (n— ")) =0.

Hence, (1) is independent of the choice of 7. The defined above extension of f (still denoted by f)
is, of course, a linear continuous functional on C*°(R"). Indeed, let a sequence 1* converge to 1)
in O (R"), i.e., ¥* converges to ¢ together with all derivatives uniformly on every compact subset
of R™. Then ny* converges to n¢ in D(R™) and

(F0F) = (fm*) — (fome) = (£,0).
Example 9.7. For every 1) € C*°(R™) we have

(0(x), ) = (6(x), mp) = n(0)1(0) = ¢(0)
since n = 1 in a neighbourhood of supp (x) = {0}. ¢



