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REAL ANALYSIS LECTURE NOTES

RASUL SHAFIKOV

9. Differentiation of distributions and the structure theorems

We saw in the previous section that the space of distributions is a generalization of the space of
functions defined point-wise. A remarkable consequence of this fact is that all distributions admit
partial derivatives of any order (suitably defined).

9.1. Definition, basic properties, first examples. We begin with some motivation. Suppose
that f is a regular function on a domain Ω in Rn, say, of class C1(Ω). Then its partial derivative

(in the usual sense) ∂f
∂xj

defines a distribution acting on ϕ ∈ D(Ω) by

〈T ∂f
∂xj

, ϕ〉 =

∫
Ω

∂f(x)

∂xj
ϕ(x)dx = −

∫
Ω
f(x)

∂ϕ(x)

∂xj
dx = −〈Tf ,

∂ϕ

∂xj
〉,

where the second equality follows from the integration by parts formula. But the last expression is
defined for an arbitrary distribution f ; so it is natural to take it as a definition of the derivative of
a distribution. For f ∈ D′(Ω) and a multi-index α = (α1, ..., αn) we set

〈Dαf, ϕ〉 := (−1)|α|〈f,Dαϕ〉,

where we used the usual notation

Dα =
∂|α|

∂xα1 ...∂xαn
, |α| = α1 + ...+ αn.

Derivatives in D′(Ω) are often called weak derivatives. It is easy to check (do it!) that weak
differentiation is a well-defined operation, that is, Dαf ∈ D′(Ω). We note some basic properties of
this operation:

(0) If f ∈ C1(Ω), then ∂
∂xj

Tf = T ∂f
∂xj

.

(1) The map Dα : D′(Ω) −→ D′(Ω) is linear and continuous. The linearity is obvious. In
order to prove continuity, consider a sequence fj −→ 0 in D′(Ω) as j → ∞. Then for any
ϕ ∈ D(Ω),

〈Dαfj , ϕ〉 = (−1)|α|〈fj , Dαϕ〉 −→ 0, as j →∞.
Thus, if a sequence (fj) converges to f in D′(Ω), then all partial derivatives of fj converge
to the corresponding partial derivatives of f .

(2) Every distribution admits partial derivatives of all orders.
(3) For any multi-indices α and β we have

Dα+βf = Dα(Dβf) = Dβ(Dαf).

(4) The Leinbitz rule. If f ∈ D′(Ω) and a ∈ C∞(Ω) then

∂(af)

∂xk
= a

∂f

∂xk
+

∂a

∂xk
f.
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Indeed, given ϕ ∈ D(Ω) we have

〈∂(af)

∂xk
, ϕ〉 = −〈af, ∂ϕ

∂xk
〉 = −〈f, a ∂ϕ

∂xk
〉 = −〈f, ∂(aϕ)

∂xk
− ∂a

∂xk
ϕ〉 =

−〈f, ∂(aϕ)

∂xk
〉+ 〈f, ∂a

∂xk
ϕ〉 = 〈 ∂f

∂xk
, aϕ〉+ 〈 ∂a

∂xk
f, ϕ〉

= 〈a ∂f
∂xk

, ϕ〉+ 〈 ∂a
∂xk

f, ϕ〉 = 〈
(
a
∂f

∂xk
+

∂a

∂xk
f

)
, ϕ〉.

We consider several elementary examples in dimension 1.

Example 9.1. Consider the so-called Heaviside function

θ(x) =

{
1, if x > 0,

0, if x ≤ 0.

Then,

〈θ′, φ〉 = −〈θ, φ′〉 = −
∫ ∞

0
φ′(x)dx = φ(0) = 〈δ, φ〉.

Thus, θ′ = δ. �

Example 9.2. More generally, let f be a function of class C1 on (−∞, x0] and of class C1 on
[x0,∞). Denote by [f ]x0 := f(x0 + 0)− f(x0 − 0) its “jump” at x0. Denote also by Tf ′ the regular
distribution defined by the usual derivative f ′ of f . We claim that

f ′ = Tf ′ + [f ]x0δ(x− x0),

where the derivative f ′ of f on the left is understood in the sense of distributions. For any ϕ ∈ D′(R)
we have

〈f ′, ϕ〉 = −〈f, ϕ′〉 = −
∫
f(x)ϕ′(x)dx = [f ]x0ϕ(x0) +

∫
f ′(x)ϕ(x)dx

= 〈[f ]x0δ(x− x0) + Tf ′ , ϕ〉.
�

Example 9.3. Let f(x) = ln |x|. Then for every φ ∈ D(R) we obtain

〈ln |x|′, ϕ〉 = −〈ln |x|, ϕ′〉 = −
∫
R

ln |x|ϕ′dx =

− lim
ε−→0+

(∫ −ε
−∞

ln |x|ϕ′(x)dx+

∫ +∞

ε
ln |x|ϕ′(x)dx

)
=

− lim
ε−→0+

(
ln εϕ(−ε)−

∫ −ε
−∞

ϕ(x)

x
dx− ln εϕ(ε)−

∫ ∞
ε

ϕ(x)

x
dx

)
=

− lim
ε−→0+

(
ln ε[ϕ(−ε)− ϕ(ε)]−

∫
|x|≥ε

ϕ(x)

x
dx

)
=

lim
ε−→0+

∫
|x|≥ε

ϕ(x)

x
dx = 〈P 1

x
, ϕ〉

Thus

ln |x|′ = P 1

x
.

�
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Example 9.4. We have

〈δ′, φ〉 = −〈δ, φ′〉 = −φ′(0).

�

9.2. Basic differential equations with distributions. We saw in the previous examples that
the usual point-wise derivative does not give a full information about the derivative in the sense
of distributions: the Dirac delta-function appears at the points of discontinuity. The following
important statement shows that this does not happen for derivatives in the sense of distributions.

Theorem 9.1. Let f ∈ D′((a, b)) and f ′ = 0 in D′((a, b)). Then f is constant, i.e., there exists a
real constant c ∈ R such that f = Tc.

Proof. By hypothesis, for every ϕ ∈ D((a, b)) one has 〈f, ϕ′〉 = 0. Given a function ψ ∈ D((a, b)),
its primitive

ϕ(x) =

∫ x

−∞
ψ(t)dt

is identically constant on the interval [A,∞), where A < b is the sup of the support of ψ. Hence,
ϕ is in D((a, b)) if and only if

J(ψ) :=

∫ +∞

−∞
ψ(t)dt = 0.

Now fix a function τ0 ∈ D((a, b)) such that J(τ0) = 1 and given φ ∈ D((a, b)) set ψ = φ− J(φ)τ0.
Then J(ψ) = 0 and so ψ = ϕ′ for some ϕ ∈ D((a, b)). Therefore, 〈f, ψ〉 = 0 and 〈f, φ〉 =
〈f, τ0〉J(φ) = constJ(φ) for every φ ∈ D((a, b)), which proves the theorem. �

Corollary 9.2. Let f ∈ D′((a, b)) and f ′ ∈ C((a, b)). Then f is a regular distribution and f ∈
C1((a, b)).

Proof. The continuous function f ′ admits a primitive f̃ of class C1((a, b)). Then (f − f̃)′ = 0 in
D′((a, b)) and Theorem 9.1 can be applied. �

We now extend these results to distributions in several variables.

Theorem 9.3. Let Ω′ be a domain in Rn−1 and I = (a, b) be an interval in R. Assume that a
distribution f ∈ D′(Ω′ × I) satisfies

∂f

∂xn
= 0

in D′(Ω′ × I). Then there exists a distribution f̃ ∈ D′(Ω′) such that for every ϕ ∈ D(Ω′ × I)

〈f, ϕ〉 =

∫
R
〈f̃(x′), ϕ(x′, xn)〉dxn,

where x′ = (x1, . . . , xn−1). In this sense the distribution f is independent of the variable xn.

Proof. Fix a function τ0 ∈ D(I) such that
∫
R τ0dt = 1. We lift every φ ∈ D(Ω′) to a function

φ̃ ∈ D(Ω′× I) by setting φ̃(x′, xn) = φ(x′)τ0(xn). This allows us to define a distribution f̃ ∈ D′(Ω′)
by setting 〈f̃ , φ〉 = 〈f, φ̃〉, φ ∈ D(Ω′).

Given ψ ∈ D(Ω′ × I) put

J(ψ)(x′) =

∫
R
ψ(x′, xn)dxn.
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Similarly to the proof of Theorem 9.1 for every ψ ∈ D(Ω′× I) there exists a function ϕ ∈ D(Ω′× I)
such that

ψ(x)− J(ψ)(x′)τ0(xn) =
∂ϕ(x)

∂xn
.

Then by the assumptions of the theorem, 〈f, ∂ϕ(x)
∂xn
〉 = 0, and by the definition of the distribution f̃

we have

〈f, ψ〉 = 〈f, J(ψ)(x′)τ0(xn)〉 = 〈f̃ , J(ψ)〉 = 〈f̃ ,
∫
R
ψ(x′, xn)dxn〉.

It remains to show that

〈f̃ ,
∫
R
ψ(x′, xn)dxn〉 =

∫
R
〈f̃(x′), ψ(x′, xn)〉dxn.

Fix ψ ∈ D(Ω′ × I) and consider the functions F1(xn) = 〈f̃(x′),
∫ xn
−∞ ψ(x′, t)dt〉 and F2(xn) =∫ xn

−∞〈f̃(x′), ψ(x′, t)〉dt. Then it follows from Theorem 8.7 that F ′1 = F ′2. Since limxn→−∞ Fj = 0,
we obtain F1 ≡ F2. This concludes the proof. �

Corollary 9.4. Let f ∈ D(Ω) satisfy ∂f
∂xj

= 0, j = 1, ..., n. Then f is constant.

Finally we establish a weak, but useful analogue of Corollary 9.2.

Theorem 9.5. Let f and g be continuous functions in a domain Ω ⊂ Rn. Suppose that

∂Tf
∂xn

= Tg.

Then the usual partial derivative ∂f
∂xn

exists at every point x ∈ Ω and is equal to g(x).

Proof. The statement in local so without loss of generality we assume that Ω = Ω′ × I in the
notation of Theorem 9.3. Fix a point c ∈ I and set

v(x) =

∫ xn

c
g(x′, t)dt.

Then ∂(f−v)
∂xn

= 0 in D′(Ω′ × I) and Theorem 9.3 gives the existence of a distribution f̃ ∈ D′(Ω′)
such that f − v = f̃ . Furthermore, since f − v is continuous, it follows from the construction of f̃
in the proof of Theorem 9.3 that f̃ is a continuous function in x′ (defining a regular distribution).

Then the function f(x) = v(x) + f̃(x′) admits a partial derivative in xn which coincides with g.
This proves the theorem. �

9.3. Support of a distribution. Distributions with compact support. Let f ∈ D′(Ω′), and
Ω ⊂ Ω′ be a subdomain. By the restriction of f to Ω we mean a distribution f |Ω acting by

〈f |Ω, ϕ〉 := 〈f, ϕ|Ω〉, ϕ ∈ D(Ω) ⊂ D(Ω′).

We say that a distribution f ∈ D′(Rn) vanishes on an open subset U ⊂ Rn if 〈f, ϕ〉 = 0 for any
ϕ ∈ D(U), i.e., its restriction to U vanishes identically. We express this as f |U ≡ 0.

Definition 9.6. The support supp f of a distribution f ∈ D′(Rn) is the subset of Rn with the
following property: x ∈ supp f if and only if for every neighbourhood U of x there exists φ ∈ D(U)
(and so suppφ ⊂ U) such that 〈f, φ〉 6= 0, i.e., f does not vanish identically in any neighbourhood
of x.

It follows from the definition of supp f that it is a closed subset of Rn, and so its complement is
an open (but not necessarily connected) subset of Rn. Indeed, the set Rn\supp f is formed by all
points x such that f vanishes identically in some neighbourhood of x and so it is clearly open.
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Proposition 9.7. Let X be an open subset of Rn such that f ∈ D′(Rn) vanished identically in a
neighbourhood of every point of X. Then f |X ≡ 0.

Proof. Given point x ∈ X there exists a neighbourhood Uα such that f |Uα ≡ 0. Let φ ∈ D(X).
Consider a neighborhood U of suppφ such that the closure U is a compact subset of X. Let
(ηγ) be a partition of unity subordinated to a finite sub-covering (Uα) of U (see Section 7). Then
〈f, φ〉 =

∑
γ〈f, ηγφ〉 = 0 since every ηγφ ∈ D(Uα) for some α. �

Example 9.5. If f is a regular distribution defined by a function f ∈ C(Rn) then its support in
the sense of distributions coincides with the support in the usual sense since f vanishes on an open
set U as a distribution if and only if it vanishes as a usual function. �

Example 9.6. supp δ(x) = {0}. �

A remarkable property of distributions with a compact support in Rn is that one can extend them
as linear continuous functionals defined on the space C∞(Rn). Let f ∈ D′(Rn) have a compact
support supp f = K in Rn. Fix a function η ∈ C∞0 (Rn) such that η(x) = 1 in a neighbourhood of
K. Then for every ψ ∈ C∞(Rn) the function ηψ is in D(Rn) and we set

(1) 〈f, ψ〉 := 〈f, ηψ〉,
since the right-hand side is well-defined. This definition is independent of the choice of η. Indeed,
let η′ ∈ C∞0 (Rn) be another function vanishing in a neighbourhood of K. Then η − η′ vanishes in
a neighbourhood of K and for any ψ ∈ C∞(Rn) the support of the function (η − η′)ψ ∈ D(Rn) is
contained in Rn\K. By Definition 9.6 we have

〈f, ηψ〉 − 〈f, η′ψ〉 = 〈f, (η − η′)ψ〉 = 0.

Hence, (1) is independent of the choice of η. The defined above extension of f (still denoted by f)
is, of course, a linear continuous functional on C∞(Rn). Indeed, let a sequence ψk converge to ψ
in C∞(Rn), i.e., ψk converges to ψ together with all derivatives uniformly on every compact subset
of Rn. Then ηψk converges to ηψ in D(Rn) and

〈f, ψk〉 = 〈f, ηψk〉 −→ 〈f, ηψ〉 = 〈f, ψ〉.

Example 9.7. For every ψ ∈ C∞(Rn) we have

〈δ(x), ψ〉 = 〈δ(x), ηψ〉 = η(0)ψ(0) = ψ(0)

since η = 1 in a neighbourhood of supp δ(x) = {0}. �


